rho0 production and possible modification in Au + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 092301, 2004.
Inspire Record 624475 DOI 10.17182/hepdata.99052

We report results on rho(770)^0 -> pi+pi- production at midrapidity in p+p and peripheral Au+Au collisions at sqrt(s_NN) = 200 GeV. This is the first direct measurement of rho(770)^0 -> pi+pi- in heavy-ion collisions. The measured rho^0 peak in the invariant mass distribution is shifted by ~40 MeV/c^2 in minimum bias p+p interactions and ~70 MeV/c^2 in peripheral Au+Au collisions. The rho^0 mass shift is dependent on transverse momentum and multiplicity. The modification of the rho^0 meson mass, width, and shape due to phase space and dynamical effects are discussed.

1 data table match query

$\rho^{0}/\pi$ ratios as a function of c.m. system energy. The ratios are from measurements in $e^{+} e^{−}$ collisions at $10.45$ GeV, $29$ GeV and $91$ GeV c.m. system energy, $p$+$p$ at $6.8$ GeV, $19.7$ GeV, $27.5$ GeV, and $52.5$ GeV, Kp at $7.82$ GeV and $\pi^{-}$p at $19.6$ GeV. The errors on the ratios at $\sqrt{s_{NN}}= 200$ GeV are the quadratic sum of the statistical and systematic errors. The ratios at $\sqrt{s_{NN}}= 200$ GeV are offset from one another for clarity.


psi production and anti-p N and pi- N interactions at 125-GeV/c and a determination of the gluon structure functions of the anti-p and the pi-

Tzamarias, S. ; Katsanevas, S. ; Kourkoumelis, C. ; et al.
Phys.Rev.D 48 (1993) 5067-5080, 1993.
Inspire Record 297586 DOI 10.17182/hepdata.22578

We have measured the cross section for production of ψ and ψ′ in p¯ and π− interactions with Be, Cu, and W targets in experiment E537 at Fermilab. The measurements were performed at 125 GeV/c using a forward dimuon spectrometer in a closed geometry configuration. The gluon structure functions of the p¯ and π− have been extracted from the measured dσdxF spectra of the produced ψ's. From the p¯W data we obtain, for p¯, xG(x)=(2.15±0.7)[1−x](6.83±0.5)[1+(5.85±0.95)x]. In the π− case, we obtain, from the W and the Be data separately, xG(x)=(1.49±0.03)[1−x](1.98±0.06) (for π−W), xG(x)=(1.10±0.10)[1−x](1.20±0.20) (for π−Be).

1 data table match query

No description provided.


pi0 photoproduction on the proton for photon energies from 0.675-GeV to 2.875-GeV.

Dugger, M. ; Ritchie, Barry G. ; Ball, J.P. ; et al.
Phys.Rev.C 76 (2007) 025211, 2007.
Inspire Record 749989 DOI 10.17182/hepdata.51855

Differential cross sections for the reaction $\gamma p \to p \pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.

43 data tables match query

Differential cross section for indicent photon energy 675 MeV.

Differential cross section for indicent photon energy 725 MeV.

Differential cross section for indicent photon energy 775 MeV.

More…

pi+-, K+-, p and anti-p production in Z0 --> q anti-q, Z0 --> b anti-b, Z0 --> u anti-u, d anti-d, s anti-s.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 5 (1998) 585-620, 1998.
Inspire Record 473409 DOI 10.17182/hepdata.49385

The DELPHI experiment at LEP uses Ring Imaging Cherenkov detectors for particle identification. The good understanding of the RICH detectors allows the identification of charged pions, kaons and proto

1 data table match query

Differential cross section for P PBAR in Z0-->Q-QBAR events.


pi+- p differential cross sections at low energies.

Denz, H. ; Amaudruz, P. ; Brack, J.T. ; et al.
Phys.Lett.B 633 (2006) 209-213, 2006.
Inspire Record 699647 DOI 10.17182/hepdata.31620

Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.

12 data tables match query

Elastic PI- P cross section for incident kinetic energy 43.3 MeV for the rotated target data. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 43.3 MeV. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 37.1 MeV. Errors shown are statistical only.

More…

W**2 and Q**2 dependence of charged hadron and pion multiplicities in neutrino p and anti-neutrino p charged current interactions

The WA21 collaboration Jones, G.T. ; Jones, R.W.L. ; Morrison, Douglas R.O. ; et al.
Z.Phys.C 46 (1990) 25-34, 1990.
Inspire Record 305244 DOI 10.17182/hepdata.1699

Using data onvp and\(\bar vp\) charged current interactions from a bubble chamber experiment with BEBC at CERN, the average multiplicities of charged hadrons and pions are determined as functions ofW2 andQ2. The analysis is based on ∼20000 events with incidentv and ∼10000 events with incident\(\bar v\). In addition to the known dependence of the average multiplicity onW2 a weak dependence onQ2 for fixed intervals ofW is observed. ForW>2 GeV andQ2>0.1 GeV2 the average multiplicity of charged hadrons is well described by〈n〉=a1+a2ln(W2/GeV2)+a3ln(Q2/GeV2) witha1=0.465±0.053,a2=1.211±0.021,a3=0.103±0.014 for thevp anda1=−0.372±0.073,a2=1.245±0.028,a3=0.093±0.015 for the\(\bar vp\) reaction.

1 data table match query

No description provided.


Vector Meson Production by Polarized Photons at 2.8-GeV, 4.7-GeV, and 9.3-GeV

Ballam, Joseph ; Chadwick, G.B. ; Eisenberg, Y. ; et al.
Phys.Rev.D 7 (1973) 3150, 1973.
Inspire Record 73602 DOI 10.17182/hepdata.43496

We present results on vector-meson photoproduction via γp→Vp in the LBL-SLAC 82-in. hydrogen bubble chamber exposed to a linearly polarized photon beam at 2.8, 4.7, and 9.3 GeV. We find ρ0 production to have the characteristics of a diffractive process, i.e., a cross section decreasing slowly with energy and a differential cross section with slope of ∼ 6.5 GeV−2. Within errors the ρ0 production amplitudes are entirely due to natural-parity exchange. s-channel helicity is conserved to a high degree in the γ→ρ0 transition. We find evidence for small helicity-flip amplitudes for ππ pairs in the ρ0 region. Photoproduction of ω mesons is separated into its natural- (σN) and unnatural- (σU) parity-exchange contributions. The Eγ and t dependence and the spin density matrix of the unnatural-parity-exchange contribution are consistent with a one-pion-exchange process. The natural-parity-exchange part has characteristics similar to ρ0 production. At 9.3 GeV the ratio of σ(ρ0) to σN(ω) is ∼ 7. The slope of the φ differential cross section is ∼ 4.5 GeV−2, smaller than that of ρ0 and ω production. Natural-parity exchange is the main contributor to φ production. No evidence for higher-mass vector mesons is found in ππ, πππ, or KK¯ final states. The s and t dependences of Compton scattering as calculated from ρ, ω, and φ photoproduction using vector-meson dominance agree with experiment, but the predicted Compton cross section is too small by a factor of 2.

1 data table match query

CALCULATED BY THE METHOD OF MOMENTS IN THE OMEGA MASS REGION. BACKGROUND NOT SUBTRACTED (ESTIMATED TO BE <5 PCT).


Using Z boson events to study parton-medium interactions in PbPb collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 128 (2022) 122301, 2022.
Inspire Record 1850859 DOI 10.17182/hepdata.95230

The spectra measurements of charged hadrons produced in the shower of a parton originating in the same hard scattering with a leptonically decaying Z boson, are reported in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Both PbPb and pp data sets are recorded by the CMS experiment at the LHC, and correspond to an integrated luminosity of 1.7 nb$^{-1}$ and 320 pb$^{-1}$, respectively. Hadronic collision data with one reconstructed Z boson candidate with the transverse momentum $p_\mathrm{T}$$\gt$ 30 GeV/$c$ are analyzed. The Z boson constrains the initial energy and direction of the associated parton. In heavy ion events, azimuthal angular distributions of charged hadrons with respect to the direction of a Z boson are sensitive to modifications of the in-medium parton shower and medium response. Compared to reference data from pp interactions, the results for central PbPb collisions indicate a modification of the angular correlations. The measurements of the fragmentation functions and $p_\mathrm{T}$ spectra of charged particles in Z boson events, which are sensitive to medium modifications of the parton shower longitudinal structure, are also reported. Significant modifications in central PbPb events compared to pp reference data are also found for these observables.

1 data table match query

Distributions of p$^{\mathrm{trk}}_{\mathrm{T}}$ in 50-70% centrality PbPb collisions at 5.02 TeV.


Upsilon production in U+U collisions at 193 GeV with the STAR experiment

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 064904, 2016.
Inspire Record 1482939 DOI 10.17182/hepdata.98624

We present a measurement of the inclusive production of Upsilon mesons in U+U collisions at 193 GeV at mid-rapidity (|y| < 1). Previous studies in central Au+Au collisions at 200 GeV show a suppression of Upsilon(1S+2S+3S) production relative to expectations from the Upsilon yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions (Ncoll), with an indication that the Upsilon(1S) state is also suppressed. The present measurement extends the number of participant nucleons in the collision (Npart) by 20% compared to Au+Au collisions, and allows us to study a system with higher energy density. We observe a suppression in both the Upsilon(1S+2S+3S) and Upsilon(1S) yields in central U+U data, which consolidates and extends the previously observed suppression trend in Au+Au collisions.

1 data table match query

(Color online) Quarkonium $R_{AA}$ versus binding energy in Au+Au and U+U collisions. Open symbols represent 0-60% centrality data, filled symbols are for 0-10% centrality. The $\Upsilon$ measurements in U+U collisions are denoted by red points. In the case of Au+Au collisions, the $\Upsilon$(1S) measurement is denoted by a blue square, while for the $\Upsilon$(2S+3S) states, a blue horizontal line indicates a 95% upper confidence bound. The black diamonds mark the high-$p_{T}$ $J/\psi$ measurement. The vertical lines represent nominal binding energies for the $\Upsilon$(1S) and $J/\psi$, calculated based on the mass defect, as 2$m_{D}$ $−m_{J/\psi}$ and 2$m_{B} −m_{$\Upsilon$}$, respectively (where $m_{X}$ is the mass of the given meson X) [39]. The shaded area spans between the binding energies of $\Upsilon$(2S) and $\Upsilon$(3S). The data points are slightly shifted to the left and right from the nominal binding energy values to improve their visibility.


Upsilon cross section in p+p collisions at sqrt(s) = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 82 (2010) 012004, 2010.
Inspire Record 842959 DOI 10.17182/hepdata.97119

We report on a measurement of the Upsilon(1S+2S+3S) -> e+e- cross section at midrapidity in p+p collisions at sqrt(s)=200 GeV. We find the cross section to be 114 +/- 38 (stat.) +23,-24 (syst.) pb. Perturbative QCD calculations at next-to-leading order in the Color Evaporation Model are in agreement with our measurement, while calculations in the Color Singlet Model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of Upsilon data to RHIC energies. The dielectron continuum in the invariant mass range near the Upsilon is also studied to obtain a combined cross section of Drell-Yan plus (b b-bar) -> e+e-.

1 data table match query

Evolution of the Upsilon(1S+2S+3S) cross section with center-of-mass energy.