The measurement of the nonelectromagnetic forward-backward charge asymmetry in the reaction e+e−→μ+μ− at s∼34.6 GeV and in the angular region 0<|cosθ|<0.8 is reported. With a systematic error less than 1%, we observe an asymmetry of (-8.1±2.1)%. This is in agreement with the standard electroweak theory prediction of (-7.6±0.6)%. The weak-current coupling constants are also reported.
SEE PRL 55, 665 FOR DISTRIBUTIONS AT 34.6 GEV AND ABOVE.
SEE PRL 55, 665 FOR CROSS SECTION VALUES AND FORWARD BACKWARD ASYMMETRY.
No description provided.
Measurements of energy-energy correlations in hadronic final states produced in e + e − annihilation at c.m. energies between 7.7 and 31.6 GeV are presented. The data are compared to perturbative QCD predictions. Good qualitative agreement above 20 GeV c.m. energy is found. The importance of non-perturbative effects is discussed, as well as the detailed behaviour of the correlation near 180°.
No description provided.
OPPOSITE SIDE ENERGY-ENERGY CORRELATIONS NEAR 180 DEG.
ENERGY-ENERGY CORRELATION INTEGRATED IN THE REGION 60 TO 120 DEG.
The differential cross section for the reaction e + e − → γγ has been measured in the CMS energy range between 9.4 and 31.6 GeV. The results are found to be in agreement with the predictions of quantum electrodynamics up to momentum transfers- q 2 of 900 GeV 2 . The data set lower limits of about 40 GeV on QED cut-off parameters. We have searched for the decay υ (9.46) → γγ and obtain an upper limit Γ ( υ → γγ )/ Γ ( υ → all) < 1.4% (95% c.l.).
No description provided.
None
No description provided.
No description provided.
Cross sections have been determined for the inclusive production of vector (ϱ 0 , ω, K ∗ ) and tensor (f, A 2 ± ) mesons in p p reactions at 9.1 GeV/c for both annihilation and non-annihilation processes. Distributions in the Feynman variable x and transverse momentum squared, p T 2 , have been examined for the ϱ 0 , ω and f mesons. The slopes for p T 2 appear to be exponential and decrease with increasing particle mass for both annihilation and non-annihilation reactions, furthermore the slopes have consistently higher values for non-annihilation reactions. Comparisons with other data indicate that the ratio ϱ 0 / π − is independent of antiproton momentum in annihilation processes.
NON-ANNIHILATION EVENTS.
No description provided.
No description provided.
The reactions e+e−→e+e− and e+e−→μ+μ− have been measured at center-of-mass energies 3.0, 3.8, and 4.8 GeV and production angles of 50°<θ<130° over all azimuthal angles. Agreement with quantum electrodynamics is excellent. New limits for cutoff parameters in quantum-electrodynamic-breakdown models are given.
No description provided.
No description provided.