We summarize a search for the top quark with the Collider Detector at Fermilab (CDF) in a sample of $\bar{p}p$ collisions at $\sqrt{s}$= 1.8 TeV with an integrated luminosity of 19.3pb$~{-1}$. We find 12 events consistent with either two $W$ bosons, or a $W$ boson and at least one $b$ jet. The probability that the measured yield is consistent with the background is 0.26\%. Though the statistics are too limited to establish firmly the existence of the top quark, a natural interpretation of the excess is that it is due to $t\bar{t}$ production. Under this assumption, constrained fits to individual events yield a top quark mass of $174 \pm 10~{+13}_{-12}$ GeV/c$~2$. The $t\bar{t}$ production cross section is measured to be $13.9~{+6.1}_{-4.8}$pb. (Submitted to Physical Review Letters on May 16, 1994).
No description provided.
We present a precise measurement of the left-right cross section asymmetry ($A_{LR}$) for $Z$ boson production by $\ee$ collisions. The measurement was performed at a center-of-mass energy of 91.26 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (63.0$\pm$1.1)%. Using a sample of 49,392 $\z0$ decays, we measure $A_{LR}$ to be 0.1628$\pm$0.0071(stat.)$\pm$0.0028(syst.) which determines the effective weak mixing angle to be $\swein=0.2292\pm0.0009({\rm stat.})\pm0.0004({\rm syst.})$.}
The observed, corrected, asymmetry. L and R refer to the left and right handed beam polarizations.
The left-right asymmetry and effective weak mixing angle corrected to the pole energy value, taking into account photon exchange and electro weak interferences. L and R refer to left and right beam polarizations.
We have determined the strong coupling $\as$ from a comprehensive study of energy-energy correlations ($EEC$) and their asymmetry ($AEEC$) in hadronic decays of $Z~0$ bosons collected by the SLD experiment at SLAC. The data were compared with all four available predictions of QCD calculated up to $\Oa2$ in perturbation theory, and also with a resummed calculation matched to all four of these calculations. We find large discrepancies between $\as$ values extracted from the different $\Oa2$ calculations. We also find a large renormalization scale ambiguity in $\as$ determined from the $EEC$ using the $\Oa2$ calculations; this ambiguity is reduced in the case of the $AEEC$, and is very small when the matched calculations are used. Averaging over all calculations, and over the $EEC$ and $AEEC$ results, we obtain $\asz=0.124~{+0.003}_{-0.004} (exp.) \pm 0.009 (theory).$
Statistical errors only.
Statistical errors only.
ALPHAS from the EEC O(ALPHAS**2) measurement.
Annihilation cross-sections σann for antineutrons on some nuclei (C, Al, Cu, Sn and Pb) at three antineutron momenta (180, 240 and 280 MeV/c) were measured at LEAR (CERN) with the OBELIX spectrometer. A behaviour σann=σ0Aν has been found withν≈2/3. The data are discussed following some models for antineutron-nucleus interaction.
No description provided.
No description provided.
No description provided.
The φπ + /ωπ + ratio from n¯p annihilations on a liquid hydrogen target, for n¯ momenta between 64 and 297 MeV/ c , was measured using the OBELIX spectrometer at LEAR. The ratio R(ϕπ/ωπ)=σ(n¯p→ϕπ+)/σ(n¯p→ωπ+) turned out 0.110±0.015 stat ±0.006 syst . Implications of this result on the OZI rule are discussed.
Assumes branching ratios of (49.1 +- 0.8)% for phi --> K+ K- and (88.8 +- 0.6)% for omega --> pi+ pi- pi0.
We report a measurement of the proton-antiproton total cross section σT at c.m.s. energies √s =546 and 1800 GeV. Using the luminosity-independent method, we find σT=61.26±0.93 mb at √s =546 GeV and 80.03±2.24 mb at √s =1800 GeV. In this energy range, the ratio σel/σT increases from 0.210±0.002 to 0.246±0.004.
No description provided.
Assuming RHO = 0.15.
We have determined the strong coupling αs from measurements of jet rates in hadronic decays of Z0 bosons collected by the SLD experiment at SLAC. Using six collinear and infrared safe jet algorithms we compared our data with the predictions of QCD calculated up to second order in perturbation theory, and also with resummed calculations. We find αs(MZ2)=0.118±0.002(stat)±0.003(syst)±0.010(theory), where the dominant uncertainty is from uncalculated higher order contributions.
The second systematic error comes from the theoretical uncertainties.
The W production cross section times the branching ratio for W→lν, l=e,μ decays has been measured as a function of the associated jet multiplicity. The data have been recorded at the Collider Detector at Fermilab during the 1988–89 run. A recent leading order QCD calculation agrees well with the data up to a jet multiplicity of 4.
No description provided.
No description provided.
Cross section times the leptonic branching ratio from the combined electron and muon decay modes.
Antinucleon-nucleus annihilations into two-body final states containing only one or no meson are unusual annihilations (Pontecorvo reactions), practically unexplored experimentally, with the exception of the channel p d → π − p , for which only two low-statistics measurements exist. Their physical interest lies in the possibility of exploring small-distance nuclear dynamics, in which an important role can be played by non-nucleonic degrees of freedom. A new measurement of the p d → π − p reaction rate at rest, performed with the OBELIX spectrometer at LEAR, with the best statistics up to now and a careful evaluation of systematic effects is reported, together with a critical analysis of the existing theoretical models. The measured branching ratio, which confirms the previous results, can represent a reference point for the studies in the field.
No description provided.
We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).
R and L refer to Right and Left handed beam polarization.
Effective weak mixing angle.