We present the results of a detailed study of ω′(1675) production in the reaction π+p→Δ++π+π−π0 from a high-statistics bubble-chamber experiment at 15 GeV/c. We have measured the mass, width, and cross section as well as differential cross section and spin density matrix elements and compare then to A20 production in the same reaction. We show clear evidence for the resonant phase increase of the 3− (ρπ)fI=0 amplitude with ω′(1675) production.
We report on a study of 15-GeV/c π+p interactions of all topologies using the SLAC 82-in. hydrogen bubble chamber. A description is given of the automatic pattern-recognition techniques used to measure the events. Cross sections are given for meson-resonance production in all topologies. Evidence is presented for a new resonance decaying to five pions. A measurement is made of the branching ratios of the g meson. A study is made of low-mass enhancements in the diffractively produced ρπ, fπ, and gπ channels, and a search is made for nondiffractive production of the A1 meson.
A search for the production of charmed particles in 15-BeV/c π+p interactions has been carried out. The search was sensitive to charmed particles in the 1.5 to 4.0 BeV mass range, with lifetimes ≲10−11 sec, decaying into a strange particle with up to eight additional pions. No evidence for the production of such particles was found.
We have studied the spin-parity structure of the 3π system produced opposite a proton or Δ++ in π+p interactions at 15 GeV/c. Our results suggest that the broad enhancement at 1.1 GeV, traditionally associated with the A1, does not have the properties usually associated with a resonant state. We obtain similar results for the A3 and A4 enhancements.