Showing 10 of 669 results
Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.
Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6c. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6d. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6e. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6f. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 7a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7d. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7e. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7f. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 8a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8d. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8e. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8f. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 21b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5a. The unfolded $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5a. The unfolded $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 36-40a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 36-40b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 36-40c. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 51-55a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 51-55b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 51-55c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 66-70a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 66-70b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 66-70c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 26-30a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 26-30b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 26-30c. The unfolded $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 41-45a. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90a. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 41-45b. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90b. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 41-45c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 56-60a. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105a. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 56-60b. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105b. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 56-60c. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105c. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 31-35a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 31-35b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 31-35c. The unfolded $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 46-50a. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95a. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 46-50b. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95b. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 46-50c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 61-65a. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110a. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 61-65b. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110b. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 61-65c. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110c. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 6a. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15a. Theextracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6b. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15b. The extracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6c. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15c. The extracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 7a. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16a. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7b. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16b. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7c. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16c. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8a. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17a. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8b. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17b. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8c. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17c. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 6a. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15a. Theextracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6b. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15b. The extracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6c. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15c. The extracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 7a. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16a. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7b. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16b. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7c. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16c. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8a. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17a. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8b. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17b. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8c. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17c. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 99a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 99b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 99c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 101a. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102a. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 101b. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102b. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 101c. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102c. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103a. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104a. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103b. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104b. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103c. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104c. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 105a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 105b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 105c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 107a. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108a. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 107b. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108b. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 107c. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108c. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109a. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110a. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109b. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110b. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109c. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110c. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 111a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 113a. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114a. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 113b. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114b. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 113c. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114c. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115a. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116a. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115b. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116b. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115c. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116c. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 99d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 99e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 99f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 101d. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102d. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 101e. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102e. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 101f. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102f. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 103d. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104d. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 103e. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104e. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 103f. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104f. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 105d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 105e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 105f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 107d. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108d. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 107e. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108e. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 107f. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108f. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 109d. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110d. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 109e. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110e. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 109f. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110f. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 111d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 111f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 112f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 113d. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114d. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 113e. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114e. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 113f. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114f. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 115d. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116d. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 115e. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116e. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 115f. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116f. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
This paper presents cross sections for the production of a W boson in association with jets, measured in proton--proton collisions at $\sqrt{s}=7$ TeV with the ATLAS experiment at the Large Hadron Collider. With an integrated luminosity of $4.6 fb^{-1}$, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1 TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.
Distribution of inclusive jet multiplicity.
Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of exclusive jet multiplicity.
Breakdown of systematic uncertainties in percent in exclusive jet multiplicity in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in exclusive jet multiplicity in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (leading jet) [GeV] with at least one jet in the event.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (leading jet) [GeV] with exactly one jet in the event.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with exactly one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with exactly one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (leading jet) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (leading jet) [GeV] with at least three jets in the event.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (2nd jet) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in pT (2nd jet) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (2nd jet) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (3rd jet) [GeV] with at least three jets in the event.
Breakdown of systematic uncertainties in percent in pT (3rd jet) [GeV] with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (3rd jet) [GeV] with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (4th jet) [GeV] with at least four jets in the event.
Breakdown of systematic uncertainties in percent in pT (4th jet) [GeV] with at least four jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (4th jet) [GeV] with at least four jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (5th jet) [GeV] with at least five jets in the event.
Breakdown of systematic uncertainties in percent in pT (5th jet) [GeV] with at least five jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (5th jet) [GeV] with at least five jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of leading jet rapidity with at least one jet in the event.
Breakdown of systematic uncertainties in percent in leading jet rapidity with at least one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in leading jet rapidity with at least one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of 2nd jet rapidity with at least two jets in the event.
Breakdown of systematic uncertainties in percent in 2nd jet rapidity with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in 2nd jet rapidity with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least one jet in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with exactly one jet in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with exactly two jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least three jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with exactly three jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least four jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least four jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least four jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least five jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least five jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least five jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of DPhi(jj) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in DPhi(jj) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in DPhi(jj) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of Dy(jj) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in Dy(jj) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in Dy(jj) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of DR(jj) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in DR(jj) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in DR(jj) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of m(jj) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in m(jj) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in m(jj) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of 3rd jet rapidity with at least three jets in the event.
Breakdown of systematic uncertainties in percent in 3rd jet rapidity with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in 3rd jet rapidity with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of 4th jet rapidity with at least four jets in the event.
Breakdown of systematic uncertainties in percent in 4th jet rapidity with at least four jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in 4th jet rapidity with at least four jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of 5th jet rapidity with at least five jets in the event.
Breakdown of systematic uncertainties in percent in 5th jet rapidity with at least five jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in 5th jet rapidity with at least five jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least one jet in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with exactly two jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with exactly two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with exactly two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least three jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with exactly three jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with exactly three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with exactly three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least four jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least four jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least four jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least five jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least five jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least five jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Event-shape observables measured using charged particles in inclusive $Z$-boson events are presented, using the electron and muon decay modes of the $Z$ bosons. The measurements are based on an integrated luminosity of $1.1 {\rm fb}^{-1}$ of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy $\sqrt{s}=7$ TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the $Z$-boson decay, are measured in different ranges of transverse momentum of the $Z$ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and $\mathcal{F}$-parameter, which are in particular sensitive to properties of the underlying event at small values of the $Z$-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high $Z$-boson transverse momenta than at low $Z$-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
The measurement of charged-particle event shape variables is presented in inclusive inelastic pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor and transverse sphericity, each defined using the final-state charged particles' momentum components perpendicular to the beam direction. Events with at least six charged particles are selected by a minimum-bias trigger. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged particle transverse momentum, charged particle multiplicity and summed transverse momentum is presented. Predictions from several Monte Carlo models show significant deviations from data.
Normalized distributions of Tranverse Thrust for 4 ranges of leading particle PT.
Normalized distributions of Tranverse Thrust for 5 lower limit values of leading particle PT.
Normalized distributions of Tranverse Thrust Minor for 4 ranges of leading particle PT.
Normalized distributions of Tranverse Thrust Minor for 5 lower limit values of leading particle PT.
Normalized distributions of Tranverse Sphericity for 4 ranges of leading particle PT.
Normalized distributions of Tranverse Sphericity for 5 lower limit values of leading particle PT.
Mean Values of Thrust, Thrust Minor and Sphericity verses Multiplicity.
Mean Values of Thrust, Thrust Minor and Sphericity verses charged particle PT scalar sum.
The production cross-sections for $W^{\pm}$ and $Z$ bosons are measured using ATLAS data corresponding to an integrated luminosity of 4.0 pb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}=2.76$ TeV. The decay channels $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell $ are used, where $\ell$ can be an electron or a muon. The cross-sections are presented for a fiducial region defined by the detector acceptance and are also extrapolated to the full phase space for the total inclusive production cross-section. The combined (average) total inclusive cross-sections for the electron and muon channels are: \begin{eqnarray} \sigma^{\text{tot}}_{W^{+}\rightarrow \ell \nu}& = & 2312 \pm 26\ (\text{stat.})\ \pm 27\ (\text{syst.}) \pm 72\ (\text{lumi.}) \pm 30\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{W^{-}\rightarrow \ell \nu}& = & 1399 \pm 21\ (\text{stat.})\ \pm 17\ (\text{syst.}) \pm 43\ (\text{lumi.}) \pm 21\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{Z \rightarrow \ell \ell}& = & 323.4 \pm 9.8\ (\text{stat.}) \pm 5.0\ (\text{syst.}) \pm 10.0\ (\text{lumi.}) \pm 5.5 (\text{extr.}) \text{pb} \nonumber. \end{eqnarray} Measured ratios and asymmetries constructed using these cross-sections are also presented. These observables benefit from full or partial cancellation of many systematic uncertainties that are correlated between the different measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> mu- nu final state.
Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+ e- final state.
Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> mu+ mu- final state.
Measured total cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured total cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.
Measured total cross section times leptonic branching ratio for W- production in the W- -> e- nu final state.
Measured total cross section times leptonic branching ratio for W- production in the W- -> mu- nu final state.
Measured total cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+ e- final state.
Measured total cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> mu+ mu- final state.
Combined fiducial cross-section measurements for W+ boson production in the W+ -> l+ nu (l = e, mu) final state.
Combined fiducial cross-section measurements for W- boson production in the W- -> l- nu (l = e, mu) final state.
Combined fiducial cross-section measurements for W boson production in the W -> l nu (l = e, mu) final state.
Combined fiducial cross-section measurements for Z/gamma* production in the Z/gamma* -> l- l+ (l = e, mu) final state.
Combined total cross-section measurements for W+ boson production in the W+ -> l+ nu (l = e, mu) final state.
Combined total cross-section measurements for W- boson production in the W- -> l- nu (l = e, mu) final state.
Combined total cross-section measurements for W boson production in the W -> l nu (l = e, mu) final state.
Combined total cross-section measurements for Z/gamma* production in the Z/gamma* -> l- l+ (l = e, mu) final state.
Measured fiducial cross-section ratio R_{W+-/Z} = sigma (W+/- -> l+/- nu/nubar) / sigma (Z/gamma^* -> l+ l-) where l = e, mu.
Measured fiducial cross-section ratio R_{W+/W-} = sigma (W+ -> l+ nu) / sigma (W- -> l- nubar) where l = e, mu.
Measured charge asymmetry in W-boson production A_{l} = ( sigma (W+ -> l+ nu) - sigma (W- -> l- nubar) ) / ( sigma (W+ -> l+ nu) + sigma (W- -> l- nubar) ) where l = e, mu.
The ratio of measured W+ cross-sections in the electron and muon decay channels R_{W+} = sigma (W+ -> e+ nu) / sigma (W+ -> mu+ nu)
The ratio of measured W- cross-sections in the electron and muon decay channels R_{W-} = sigma (W- -> e- nu) / sigma (W- -> mu- nu)
The ratio of measured W cross-sections in the electron and muon decay channels R_{W} = sigma (W -> e nu) / sigma (W -> mu nu)
The ratio of measured Z/gamma^* cross-sections in the electron and muon decay channels R_{Z/gamma^*} = sigma (Z/gamma^* -> e+ e-) / sigma (Z/gamma^* -> mu+ mu-)
Correlation coefficients among (W- -> l- nubar), (W+ -> l+ nu), (Z/gamma^* -> l+ l-) where (l = e, mu) excluding the common normalisation uncertainty due to the luminosity calibration.
Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, $t\bar{t}$ system and event-level kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV}. The observables have been chosen to emphasize the $t\bar{t}$ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb$^{-1}$, recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a $b$-quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the hadronic top-quark transverse momentum $p_{T}^{t}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the hadronic top-quark transverse momentum $p_{T}^{t}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the hadronic top-quark absolute rapidity $|y^{t}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the hadronic top-quark absolute rapidity $|y^{t}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute out-of-plane momentum $|p_{out}^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute out-of-plane momentum $|p_{out}^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $y_{boost}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $y_{boost}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $\chi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $\chi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $R_{Wt}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $R_{Wt}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute rapidity $|y^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute rapidity $|y^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the top-quark transverse momentum $p_{T}^{t}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the top-quark transverse momentum $p_{T}^{t}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the top-quark absolute rapidity $|y^{t}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the top-quark absolute rapidity $|y^{t}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute out-of-plane momentum $|p_{out}^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute out-of-plane momentum $|p_{out}^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $y_{boost}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $y_{boost}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $\chi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $\chi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation and structure is achieved in order to reach the highest levels of experimental and theoretical precision. There have been many measurements of jet substructure at the LHC and previous colliders, but the targeted observables mix physical effects from various origins. Based on a recent proposal to factorize physical effects, this Letter presents a double-differential cross-section measurement of the Lund jet plane using 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected with the ATLAS detector using jets with transverse momentum above 675 GeV. The measurement uses charged particles to achieve a fine angular resolution and is corrected for acceptance and detector effects. Several parton shower Monte Carlo models are compared with the data. No single model is found to be in agreement with the measured data across the entire plane.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for use in MC tuning.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 0.00 < ln(R/#DeltaR) < 0.33.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 0.33 < ln(R/#DeltaR) < 0.67.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 0.67 < ln(R/#DeltaR) < 1.00.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 1.00 < ln(R/#DeltaR) < 1.33.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 1.33 < ln(R/#DeltaR) < 1.67.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 1.67 < ln(R/#DeltaR) < 2.00.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 2.00 < ln(R/#DeltaR) < 2.33.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 2.33 < ln(R/#DeltaR) < 2.67.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 2.67 < ln(R/#DeltaR) < 3.00.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 3.00 < ln(R/#DeltaR) < 3.33.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 3.33 < ln(R/#DeltaR) < 3.67.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 3.67 < ln(R/#DeltaR) < 4.00.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 4.00 < ln(R/#DeltaR) < 4.33.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 0.69 < ln(1/z) < 0.97.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 0.97 < ln(1/z) < 1.25.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 1.25 < ln(1/z) < 1.52.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 1.52 < ln(1/z) < 1.80.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 1.80 < ln(1/z) < 2.08.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 2.08 < ln(1/z) < 2.36.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 2.36 < ln(1/z) < 2.63.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 2.63 < ln(1/z) < 2.91.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 2.91 < ln(1/z) < 3.19.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 3.19 < ln(1/z) < 3.47.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 3.47 < ln(1/z) < 3.74.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 3.74 < ln(1/z) < 4.02.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 4.02 < ln(1/z) < 4.30.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 4.30 < ln(1/z) < 4.57.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 4.57 < ln(1/z) < 4.85.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 4.85 < ln(1/z) < 5.13.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 5.13 < ln(1/z) < 5.41.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 5.41 < ln(1/z) < 5.68.
Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single horizontal slice of the Lund jet plane between 5.68 < ln(1/z) < 5.96.
The summed covariance matrix of all systematic and statistical uncertainties associated with the measurement in bins of $\ln{(1/z)} \times \ln{(R/\Delta R)}$.
The summed covariance matrix of all statistical uncertainties associated with the measurement in bins of $\ln{(1/z)} \times \ln{(R/\Delta R)}$.
Searches for scalar leptoquarks pair-produced in proton-proton collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider are performed by the ATLAS experiment. A data set corresponding to an integrated luminosity of 36.1 fb$^{-1}$ is used. Final states containing two electrons or two muons and two or more jets are studied, as are states with one electron or muon, missing transverse momentum and two or more jets. No statistically significant excess above the Standard Model expectation is observed. The observed and expected lower limits on the leptoquark mass at 95% confidence level extend up to 1.29 TeV and 1.23 TeV for first- and second-generation leptoquarks, respectively, as postulated in the minimal Buchm\"uller-R\"uckl-Wyler model, assuming a branching ratio into a charged lepton and a quark of 50%. In addition, measurements of particle-level fiducial and differential cross sections are presented for the $Z\rightarrow ee$, $Z\rightarrow\mu\mu$ and $t\bar{t}$ processes in several regions related to the search control regions. Predictions from a range of generators are compared with the measurements, and good agreement is seen for many of the observables. However, the predictions for the $Z\rightarrow\ell\ell$ measurements in observables sensitive to jet energies disagree with the data.
Inclusive cross-section and uncertainty from each source, for the dominant process in the each measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{ee}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{\mu\mu}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{e\mu}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{ee}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{\mu\mu}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{e\mu}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the $ee jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Expected and observed 95% CL lower limits on first- and second-generation leptoquark masses for different values of $\beta$.
Event yields in the dimuon channel control regions with total uncertainties. The observed number of events is given in the first row. The background event numbers as obtained from the fit are shown together with the total uncertainties. The second row shows the total background expectation, the further rows show the breakdown into different background components.
Event yields in the dielectron channel control regions with total uncertainties. The observed number of events is given in the first row. The background event numbers as obtained from the fit are shown together with the total uncertainties. The second row shows the total background expectation, the further rows show the breakdown into different background components.
Distribution of $m_{LQ}^{min}$ in the training region for the BDT for the $ee jj$ and $\mu\mu jj$ channels. Data are shown together with predicted total background expectation.
Distribution of $m_{LQ}^{T}$ in the training region for the BDT for the $e\nu jj$ and $\mu\nu jj$ channels. Data are shown together with predicted total background expectation.
This paper presents a measurement of quantities related to the formation of jets from high-energy quarks and gluons (fragmentation). Jets with transverse momentum 100 GeV $
$\langle n_{ch} \rangle$, forward jet.
$\langle n_{ch} \rangle$, central jet.
$\langle \zeta \rangle$, forward jet.
$\langle \zeta \rangle$, central jet.
$\langle p_{T}^{rel} / GeV \rangle$, forward jet.
$\langle p_{T}^{rel} / GeV \rangle$, central jet.
$\langle r \rangle$, forward jet.
$\langle r \rangle$, central jet.
$\langle n_{ch} \rangle$, both jets.
$\langle \zeta \rangle$, combined jet.
$\langle p_{T}^{rel} / GeV \rangle$, both jets.
$\langle r \rangle$, both jets.
$n_{ch}$ , 100 GeV < Jet p_{T} < 200 GeV, both jets.
$n_{ch}$ , 200 GeV < Jet p_{T} < 300 GeV, both jets.
$n_{ch}$ , 300 GeV < Jet p_{T} < 400 GeV, both jets.
$n_{ch}$ , 400 GeV < Jet p_{T} < 500 GeV, both jets.
$n_{ch}$ , 500 GeV < Jet p_{T} < 600 GeV, both jets.
$n_{ch}$ , 600 GeV < Jet p_{T} < 700 GeV, both jets.
$n_{ch}$ , 700 GeV < Jet p_{T} < 800 GeV, both jets.
$n_{ch}$ , 800 GeV < Jet p_{T} < 900 GeV, both jets.
$n_{ch}$ , 900 GeV < Jet p_{T} < 1000 GeV, both jets.
$n_{ch}$ , 1000 GeV < Jet p_{T} < 1200 GeV, both jets.
$n_{ch}$ , 1200 GeV < Jet p_{T} < 1400 GeV, both jets.
$n_{ch}$ , 1400 GeV < Jet p_{T} < 1600 GeV, both jets.
$n_{ch}$ , 1600 GeV < Jet p_{T} < 2000 GeV, both jets.
$n_{ch}$ , 2000 GeV < Jet p_{T} < 2500 GeV, both jets.
$r$ , 100 GeV < Jet p_{T} < 200 GeV, both jets.
$r$ , 200 GeV < Jet p_{T} < 300 GeV, both jets.
$r$ , 300 GeV < Jet p_{T} < 400 GeV, both jets.
$r$ , 400 GeV < Jet p_{T} < 500 GeV, both jets.
$r$ , 500 GeV < Jet p_{T} < 600 GeV, both jets.
$r$ , 600 GeV < Jet p_{T} < 700 GeV, both jets.
$r$ , 700 GeV < Jet p_{T} < 800 GeV, both jets.
$r$ , 800 GeV < Jet p_{T} < 900 GeV, both jets.
$r$ , 900 GeV < Jet p_{T} < 1000 GeV, both jets.
$r$ , 1000 GeV < Jet p_{T} < 1200 GeV, both jets.
$r$ , 1200 GeV < Jet p_{T} < 1400 GeV, both jets.
$r$ , 1400 GeV < Jet p_{T} < 1600 GeV, both jets.
$r$ , 1600 GeV < Jet p_{T} < 2000 GeV, both jets.
$r$ , 2000 GeV < Jet p_{T} < 2500 GeV, both jets.
$\zeta$ , 100 GeV < Jet p_{T} < 200 GeV, both jets.
$\zeta$ , 200 GeV < Jet p_{T} < 300 GeV, both jets.
$\zeta$ , 300 GeV < Jet p_{T} < 400 GeV, both jets.
$\zeta$ , 400 GeV < Jet p_{T} < 500 GeV, both jets.
$\zeta$ , 500 GeV < Jet p_{T} < 600 GeV, both jets.
$\zeta$ , 600 GeV < Jet p_{T} < 700 GeV, both jets.
$\zeta$ , 700 GeV < Jet p_{T} < 800 GeV, both jets.
$\zeta$ , 800 GeV < Jet p_{T} < 900 GeV, both jets.
$\zeta$ , 900 GeV < Jet p_{T} < 1000 GeV, both jets.
$\zeta$ , 1000 GeV < Jet p_{T} < 1200 GeV, both jets.
$\zeta$ , 1200 GeV < Jet p_{T} < 1400 GeV, both jets.
$\zeta$ , 1400 GeV < Jet p_{T} < 1600 GeV, both jets.
$\zeta$ , 1600 GeV < Jet p_{T} < 2000 GeV, both jets.
$\zeta$ , 2000 GeV < Jet p_{T} < 2500 GeV, both jets.
$p_{T}^{rel} / GeV$ , 100 GeV < Jet p_{T} < 200 GeV, both jets.
$p_{T}^{rel} / GeV$ , 200 GeV < Jet p_{T} < 300 GeV, both jets.
$p_{T}^{rel} / GeV$ , 300 GeV < Jet p_{T} < 400 GeV, both jets.
$p_{T}^{rel} / GeV$ , 400 GeV < Jet p_{T} < 500 GeV, both jets.
$p_{T}^{rel} / GeV$ , 500 GeV < Jet p_{T} < 600 GeV, both jets.
$p_{T}^{rel} / GeV$ , 600 GeV < Jet p_{T} < 700 GeV, both jets.
$p_{T}^{rel} / GeV$ , 700 GeV < Jet p_{T} < 800 GeV, both jets.
$p_{T}^{rel} / GeV$ , 800 GeV < Jet p_{T} < 900 GeV, both jets.
$p_{T}^{rel} / GeV$ , 900 GeV < Jet p_{T} < 1000 GeV, both jets.
$p_{T}^{rel} / GeV$ , 1000 GeV < Jet p_{T} < 1200 GeV, both jets.
$p_{T}^{rel} / GeV$ , 1200 GeV < Jet p_{T} < 1400 GeV, both jets.
$p_{T}^{rel} / GeV$ , 1400 GeV < Jet p_{T} < 1600 GeV, both jets.
$p_{T}^{rel} / GeV$ , 1600 GeV < Jet p_{T} < 2000 GeV, both jets.
$p_{T}^{rel} / GeV$ , 2000 GeV < Jet p_{T} < 2500 GeV, both jets.
$n_{ch}$ , 100 GeV < Jet p_{T} < 200 GeV, more forward jet.
$n_{ch}$ , 200 GeV < Jet p_{T} < 300 GeV, more forward jet.
$n_{ch}$ , 300 GeV < Jet p_{T} < 400 GeV, more forward jet.
$n_{ch}$ , 400 GeV < Jet p_{T} < 500 GeV, more forward jet.
$n_{ch}$ , 500 GeV < Jet p_{T} < 600 GeV, more forward jet.
$n_{ch}$ , 600 GeV < Jet p_{T} < 700 GeV, more forward jet.
$n_{ch}$ , 700 GeV < Jet p_{T} < 800 GeV, more forward jet.
$n_{ch}$ , 800 GeV < Jet p_{T} < 900 GeV, more forward jet.
$n_{ch}$ , 900 GeV < Jet p_{T} < 1000 GeV, more forward jet.
$n_{ch}$ , 1000 GeV < Jet p_{T} < 1200 GeV, more forward jet.
$n_{ch}$ , 1200 GeV < Jet p_{T} < 1400 GeV, more forward jet.
$n_{ch}$ , 1400 GeV < Jet p_{T} < 1600 GeV, more forward jet.
$n_{ch}$ , 1600 GeV < Jet p_{T} < 2000 GeV, more forward jet.
$n_{ch}$ , 2000 GeV < Jet p_{T} < 2500 GeV, more forward jet.
$r$ , 100 GeV < Jet p_{T} < 200 GeV, more forward jet.
$r$ , 200 GeV < Jet p_{T} < 300 GeV, more forward jet.
$r$ , 300 GeV < Jet p_{T} < 400 GeV, more forward jet.
$r$ , 400 GeV < Jet p_{T} < 500 GeV, more forward jet.
$r$ , 500 GeV < Jet p_{T} < 600 GeV, more forward jet.
$r$ , 600 GeV < Jet p_{T} < 700 GeV, more forward jet.
$r$ , 700 GeV < Jet p_{T} < 800 GeV, more forward jet.
$r$ , 800 GeV < Jet p_{T} < 900 GeV, more forward jet.
$r$ , 900 GeV < Jet p_{T} < 1000 GeV, more forward jet.
$r$ , 1000 GeV < Jet p_{T} < 1200 GeV, more forward jet.
$r$ , 1200 GeV < Jet p_{T} < 1400 GeV, more forward jet.
$r$ , 1400 GeV < Jet p_{T} < 1600 GeV, more forward jet.
$r$ , 1600 GeV < Jet p_{T} < 2000 GeV, more forward jet.
$r$ , 2000 GeV < Jet p_{T} < 2500 GeV, more forward jet.
$\zeta$ , 100 GeV < Jet p_{T} < 200 GeV, more forward jet.
$\zeta$ , 200 GeV < Jet p_{T} < 300 GeV, more forward jet.
$\zeta$ , 300 GeV < Jet p_{T} < 400 GeV, more forward jet.
$\zeta$ , 400 GeV < Jet p_{T} < 500 GeV, more forward jet.
$\zeta$ , 500 GeV < Jet p_{T} < 600 GeV, more forward jet.
$\zeta$ , 600 GeV < Jet p_{T} < 700 GeV, more forward jet.
$\zeta$ , 700 GeV < Jet p_{T} < 800 GeV, more forward jet.
$\zeta$ , 800 GeV < Jet p_{T} < 900 GeV, more forward jet.
$\zeta$ , 900 GeV < Jet p_{T} < 1000 GeV, more forward jet.
$\zeta$ , 1000 GeV < Jet p_{T} < 1200 GeV, more forward jet.
$\zeta$ , 1200 GeV < Jet p_{T} < 1400 GeV, more forward jet.
$\zeta$ , 1400 GeV < Jet p_{T} < 1600 GeV, more forward jet.
$\zeta$ , 1600 GeV < Jet p_{T} < 2000 GeV, more forward jet.
$\zeta$ , 2000 GeV < Jet p_{T} < 2500 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 100 GeV < Jet p_{T} < 200 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 200 GeV < Jet p_{T} < 300 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 300 GeV < Jet p_{T} < 400 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 400 GeV < Jet p_{T} < 500 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 500 GeV < Jet p_{T} < 600 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 600 GeV < Jet p_{T} < 700 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 700 GeV < Jet p_{T} < 800 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 800 GeV < Jet p_{T} < 900 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 900 GeV < Jet p_{T} < 1000 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 1000 GeV < Jet p_{T} < 1200 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 1200 GeV < Jet p_{T} < 1400 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 1400 GeV < Jet p_{T} < 1600 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 1600 GeV < Jet p_{T} < 2000 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 2000 GeV < Jet p_{T} < 2500 GeV, more forward jet.
$n_{ch}$ , 100 GeV < Jet p_{T} < 200 GeV, more central jet.
$n_{ch}$ , 200 GeV < Jet p_{T} < 300 GeV, more central jet.
$n_{ch}$ , 300 GeV < Jet p_{T} < 400 GeV, more central jet.
$n_{ch}$ , 400 GeV < Jet p_{T} < 500 GeV, more central jet.
$n_{ch}$ , 500 GeV < Jet p_{T} < 600 GeV, more central jet.
$n_{ch}$ , 600 GeV < Jet p_{T} < 700 GeV, more central jet.
$n_{ch}$ , 700 GeV < Jet p_{T} < 800 GeV, more central jet.
$n_{ch}$ , 800 GeV < Jet p_{T} < 900 GeV, more central jet.
$n_{ch}$ , 900 GeV < Jet p_{T} < 1000 GeV, more central jet.
$n_{ch}$ , 1000 GeV < Jet p_{T} < 1200 GeV, more central jet.
$n_{ch}$ , 1200 GeV < Jet p_{T} < 1400 GeV, more central jet.
$n_{ch}$ , 1400 GeV < Jet p_{T} < 1600 GeV, more central jet.
$n_{ch}$ , 1600 GeV < Jet p_{T} < 2000 GeV, more central jet.
$n_{ch}$ , 2000 GeV < Jet p_{T} < 2500 GeV, more central jet.
$r$ , 100 GeV < Jet p_{T} < 200 GeV, more central jet.
$r$ , 200 GeV < Jet p_{T} < 300 GeV, more central jet.
$r$ , 300 GeV < Jet p_{T} < 400 GeV, more central jet.
$r$ , 400 GeV < Jet p_{T} < 500 GeV, more central jet.
$r$ , 500 GeV < Jet p_{T} < 600 GeV, more central jet.
$r$ , 600 GeV < Jet p_{T} < 700 GeV, more central jet.
$r$ , 700 GeV < Jet p_{T} < 800 GeV, more central jet.
$r$ , 800 GeV < Jet p_{T} < 900 GeV, more central jet.
$r$ , 900 GeV < Jet p_{T} < 1000 GeV, more central jet.
$r$ , 1000 GeV < Jet p_{T} < 1200 GeV, more central jet.
$r$ , 1200 GeV < Jet p_{T} < 1400 GeV, more central jet.
$r$ , 1400 GeV < Jet p_{T} < 1600 GeV, more central jet.
$r$ , 1600 GeV < Jet p_{T} < 2000 GeV, more central jet.
$r$ , 2000 GeV < Jet p_{T} < 2500 GeV, more central jet.
$\zeta$ , 100 GeV < Jet p_{T} < 200 GeV, more central jet.
$\zeta$ , 200 GeV < Jet p_{T} < 300 GeV, more central jet.
$\zeta$ , 300 GeV < Jet p_{T} < 400 GeV, more central jet.
$\zeta$ , 400 GeV < Jet p_{T} < 500 GeV, more central jet.
$\zeta$ , 500 GeV < Jet p_{T} < 600 GeV, more central jet.
$\zeta$ , 600 GeV < Jet p_{T} < 700 GeV, more central jet.
$\zeta$ , 700 GeV < Jet p_{T} < 800 GeV, more central jet.
$\zeta$ , 800 GeV < Jet p_{T} < 900 GeV, more central jet.
$\zeta$ , 900 GeV < Jet p_{T} < 1000 GeV, more central jet.
$\zeta$ , 1000 GeV < Jet p_{T} < 1200 GeV, more central jet.
$\zeta$ , 1200 GeV < Jet p_{T} < 1400 GeV, more central jet.
$\zeta$ , 1400 GeV < Jet p_{T} < 1600 GeV, more central jet.
$\zeta$ , 1600 GeV < Jet p_{T} < 2000 GeV, more central jet.
$\zeta$ , 2000 GeV < Jet p_{T} < 2500 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 100 GeV < Jet p_{T} < 200 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 200 GeV < Jet p_{T} < 300 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 300 GeV < Jet p_{T} < 400 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 400 GeV < Jet p_{T} < 500 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 500 GeV < Jet p_{T} < 600 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 600 GeV < Jet p_{T} < 700 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 700 GeV < Jet p_{T} < 800 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 800 GeV < Jet p_{T} < 900 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 900 GeV < Jet p_{T} < 1000 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 1000 GeV < Jet p_{T} < 1200 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 1200 GeV < Jet p_{T} < 1400 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 1400 GeV < Jet p_{T} < 1600 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 1600 GeV < Jet p_{T} < 2000 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 2000 GeV < Jet p_{T} < 2500 GeV, more central jet.
The total uncertainty covariance matrix for the average number of tracks per jet $p_T$ bin. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the average fragmentation function per jet $p_T$ bin. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the average relative $p_T$ per jet $p_T$ bin. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the average r per jet $p_T$ bin. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the number of tracks. The first half of the bins on a given axis correspond to the more central jet while the second half correspond to the more forward jet. See Fig. 4 in the paper for more information about the binning. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the fragmentation function. The first half of the bins on a given axis correspond to the more central jet while the second half correspond to the more forward jet. See Fig. 4 in the paper for more information about the binning. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the relative $p_T$. The first half of the bins on a given axis correspond to the more central jet while the second half correspond to the more forward jet. See Fig. 4 in the paper for more information about the binning. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the r. The first half of the bins on a given axis correspond to the more central jet while the second half correspond to the more forward jet. See Fig. 4 in the paper for more information about the binning. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The dynamics of isolated-photon plus two-jet production in $pp$ collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, $\gamma+jet+jet$. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as the next-to-leading-order QCD predictions from SHERPA are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data.
Measured cross sections for isolated-photon plus two-jet production as functions of $E_{\mathrm{T}}^{\gamma}$ for the total phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $p_{\mathrm{T}}^{\textrm{jet}}$ for the total phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $|y^{\textrm{jet}}|$ for the total phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $\Delta y^{\gamma-\textrm{jet}}$ for the total phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $\Delta \phi^{\gamma-\textrm{jet}}$ for the total phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $\Delta y^{\textrm{jet}-\textrm{jet}}$ for the total phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $\Delta \phi^{\textrm{jet}-\textrm{jet}}$ for the total phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $m^{\textrm{jet}-\textrm{jet}}$ for the total phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $m^{\gamma-\textrm{jet}-\textrm{jet}}$ for the total phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $E_{\mathrm{T}}^{\gamma}$ for the fragmentation-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $p_{\mathrm{T}}^{\textrm{jet}}$ for the fragmentation-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $|y^{\textrm{jet}}|$ for the fragmentation-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $\Delta y^{\gamma-\textrm{jet}}$ for the fragmentation-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $\Delta \phi^{\gamma-\textrm{jet}}$ for the fragmentation-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $\Delta y^{\textrm{jet}-\textrm{jet}}$ for the fragmentation-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $\Delta \phi^{\textrm{jet}-\textrm{jet}}$ for the fragmentation-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $m^{\textrm{jet}-\textrm{jet}}$ for the fragmentation-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $m^{\gamma-\textrm{jet}-\textrm{jet}}$ for the fragmentation-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $E_{\mathrm{T}}^{\gamma}$ for the direct-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $p_{\mathrm{T}}^{\textrm{jet}}$ for the direct-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $|y^{\textrm{jet}}|$ for the direct-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $\Delta y^{\gamma-\textrm{jet}}$ for the direct-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $\Delta \phi^{\gamma-\textrm{jet}}$ for the direct-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $\Delta y^{\textrm{jet}-\textrm{jet}}$ for the direct-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $\Delta \phi^{\textrm{jet}-\textrm{jet}}$ for the direct-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $m^{\textrm{jet}-\textrm{jet}}$ for the direct-enriched phase-space. The predictions from Sherpa NLO are also included.
Measured cross sections for isolated-photon plus two-jet production as functions of $m^{\gamma-\textrm{jet}-\textrm{jet}}$ for the direct-enriched phase-space. The predictions from Sherpa NLO are also included.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.