Measurements of Inclusive Muon Neutrino and Antineutrino Charged Current Differential Cross Sections on Argon in the NuMI Antineutrino Beam

The ArgoNeuT collaboration Acciarri, R. ; Adams, C. ; Asaadi, J. ; et al.
Phys.Rev.D 89 (2014) 112003, 2014.
Inspire Record 1291281 DOI 10.17182/hepdata.64419

The ArgoNeuT collaboration presents measurements of inclusive muon neutrino and antineutrino charged current differential cross sections on argon in the Fermilab NuMI beam operating in the low energy antineutrino mode. The results are reported in terms of outgoing muon angle and momentum at a mean neutrino energy of 9.6 GeV (neutrinos) and 3.6 GeV (antineutrinos), in the range $0^\circ < \theta_\mu < 36^\circ$ and $0 < p_\mu < 25$ GeV/$c$, for both neutrinos and antineutrinos.

2 data tables

The measured differential cross sections in muon angle for CC NUMU and NUMUBAR interactions in argon, per argon nucleus. Both statistical and total errors are shown.

The measured differential cross sections in muon momentum for CC NUMU and NUMUBAR interactions in argon, per argon nucleus. Both statistical and total errors are shown.


Search for an anomalous excess of charged-current quasi-elastic $\nu_e$ interactions with the MicroBooNE experiment using Deep-Learning-based reconstruction

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.D 105 (2022) 112003, 2022.
Inspire Record 1953568 DOI 10.17182/hepdata.114859

We present a measurement of the $\nu_e$-interaction rate in the MicroBooNE detector that addresses the observed MiniBooNE anomalous low-energy excess (LEE). The approach taken isolates neutrino interactions consistent with the kinematics of charged-current quasi-elastic (CCQE) events. The topology of such signal events has a final state with 1 electron, 1 proton, and 0 mesons ($1e1p$). Multiple novel techniques are employed to identify a $1e1p$ final state, including particle identification that use two methods of deep-learning-based image identification, and event isolation using a boosted decision-tree ensemble trained to recognize two-body scattering kinematics. This analysis selects 25 $\nu_e$-candidate events in the reconstructed neutrino energy range of 200--1200 MeV, while $29.0 \pm 1.9_\text{(sys)} \pm 5.4_\text{(stat)}$ are predicted when using $\nu_\mu$ CCQE interactions as a constraint. We use a simplified model to translate the MiniBooNE LEE observation into a prediction for a $\nu_e$ signal in MicroBooNE. A $\Delta \chi^2$ test statistic, based on the combined Neyman--Pearson $\chi^2$ formalism, is used to define frequentist confidence intervals for the LEE signal strength. Using this technique, in the case of no LEE signal, we expect this analysis to exclude a normalization factor of 0.75 (0.98) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence level, while the MicroBooNE data yield an exclusion of 0.25 (0.38) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence

7 data tables

Observed NuE data and background (+ LEE) prediction, including the muon neutrino background prediction from the empirical fit, for arXiv:2110.14080. The prediction incorporates the constraint from the 1mu1p sample

Observed NuE data and background (+ LEE) prediction, including the muon neutrino background prediction from the empirical fit, for arXiv:2110.14080. The prediction does not incorporate the constraint from the 1mu1p sample

NuE background fractional covariance matrix after the 1mu1p constraint from arXiv:2110.14080

More…

Search for Neutrino-Induced Neutral Current $\Delta$ Radiative Decay in MicroBooNE and a First Test of the MiniBooNE Low Energy Excess Under a Single-Photon Hypothesis

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.Lett. 128 (2022) 111801, 2022.
Inspire Record 1937333 DOI 10.17182/hepdata.114860

We report results from a search for neutrino-induced neutral current (NC) resonant $\Delta$(1232) baryon production followed by $\Delta$ radiative decay, with a $\langle0.8\rangle$~GeV neutrino beam. Data corresponding to MicroBooNE's first three years of operations (6.80$\times$10$^{20}$ protons on target) are used to select single-photon events with one or zero protons and without charged leptons in the final state ($1\gamma1p$ and $1\gamma0p$, respectively). The background is constrained via an in-situ high-purity measurement of NC $\pi^0$ events, made possible via dedicated $2\gamma1p$ and $2\gamma0p$ selections. A total of 16 and 153 events are observed for the $1\gamma1p$ and $1\gamma0p$ selections, respectively, compared to a constrained background prediction of $20.5 \pm 3.65 \text{(sys.)} $ and $145.1 \pm 13.8 \text{(sys.)} $ events. The data lead to a bound on an anomalous enhancement of the normalization of NC $\Delta$ radiative decay of less than $2.3$ times the predicted nominal rate for this process at the 90% confidence level (CL). The measurement disfavors a candidate photon interpretation of the MiniBooNE low-energy excess as a factor of $3.18$ times the nominal NC $\Delta$ radiative decay rate at the 94.8% CL, in favor of the nominal prediction, and represents a greater than $50$-fold improvement over the world's best limit on single-photon production in NC interactions in the sub-GeV neutrino energy range

12 data tables

Data and MC comparison of the reconstructed $\pi^0$ momentum distribution for the 2$\gamma$1p selected events

Data/MC ratio as a function of reconstructed $\pi^0$ momentum for the 2$\gamma$1p selection

Data and MC comparison of the reconstructed $\pi^0$ momentum distribution for the 2$\gamma$0p selected events

More…

First Measurement of Energy-dependent Inclusive Muon Neutrino Charged-Current Cross Sections on Argon with the MicroBooNE Detector

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.Lett. 128 (2022) 151801, 2022.
Inspire Record 1954078 DOI 10.17182/hepdata.114863

We report a measurement of the energy-dependent total charged-current cross section $\sigma\left(E_\nu\right)$ for inclusive muon neutrinos scattering on argon, as well as measurements of flux-averaged differential cross sections as a function of muon energy and hadronic energy transfer ($\nu$). Data corresponding to 5.3$\times$10$^{19}$ protons on target of exposure were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab Booster Neutrino Beam with a mean neutrino energy of approximately 0.8~GeV. The mapping between the true neutrino energy $E_\nu$ and reconstructed neutrino energy $E^{rec}_\nu$ and between the energy transfer $\nu$ and reconstructed hadronic energy $E^{rec}_{had}$ are validated by comparing the data and Monte Carlo (MC) predictions. In particular, the modeling of the missing hadronic energy and its associated uncertainties are verified by a new method that compares the $E^{rec}_{had}$ distributions between data and an MC prediction after constraining the reconstructed muon kinematic distributions, energy and polar angle, to those of data. The success of this validation gives confidence that the missing energy in the MicroBooNE detector is well-modeled and underpins first-time measurements of both the total cross section $\sigma\left(E_\nu\right)$ and the differential cross section $d\sigma/d\nu$ on argon.

9 data tables

$\nu_\mu$CC inclusive total cross section per nucleon in each neutrino energy bin with statistical plus systematic uncertainty. The total uncertainty comes from the square root of the covariance matrix diagonal entries.

$\nu_\mu$CC inclusive differential cross section per nucleon in each muon energy bin with statistical plus systematic uncertainty. The total uncertainty comes from the square root of the covariance matrix diagonal entries.

$\nu_\mu$CC inclusive differential cross section per nucleon in each hadronic energy transfer bin with statistical plus systematic uncertainty. The total uncertainty comes from the square root of the covariance matrix diagonal entries.

More…

Version 3
Search for an anomalous excess of inclusive charged-current $\nu_e$ interactions in the MicroBooNE experiment using Wire-Cell reconstruction

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.D 105 (2022) 112005, 2022.
Inspire Record 1953539 DOI 10.17182/hepdata.114862

We report a search for an anomalous excess of inclusive charged-current (CC) $\nu_e$ interactions using the Wire-Cell event reconstruction package in the MicroBooNE experiment, which is motivated by the previous observation of a low-energy excess (LEE) of electromagnetic events from the MiniBooNE experiment. With a single liquid argon time projection chamber detector, the measurements of $\nu_{\mu}$ CC interactions as well as $\pi^0$ interactions are used to constrain signal and background predictions of $\nu_e$ CC interactions. A data set collected from February 2016 to July 2018 corresponding to an exposure of 6.369 $\times$ 10$^{20}$ protons on target from the Booster Neutrino Beam at FNAL is analyzed. With $x$ representing an overall normalization factor and referred to as the LEE strength parameter, we select 56 fully contained $\nu_e$ CC candidates while expecting 69.6 $\pm$ 8.0 (stat.) $\pm$ 5.0 (sys.) and 103.8 $\pm$ 9.0 (stat.) $\pm$ 7.4 (sys.) candidates after constraints for the absence (eLEE$_{x=0}$) of the median signal strength derived from the MiniBooNE observation and the presence (eLEE$_{x=1}$) of that signal strength, respectively. Under a nested hypothesis test using both rate and shape information in all available channels, the best-fit $x$ is determined to be 0 (eLEE$_{x=0}$) with a 95.5% confidence level upper limit of $x$ at 0.502. Under a simple-vs-simple hypotheses test, the eLEE$_{x=1}$ hypothesis is rejected at 3.75$\sigma$, while the eLEE$_{x=0}$ hypothesis is shown to be consistent with the observation at 0.45$\sigma$. In the context of the eLEE model, the estimated 68.3% confidence interval of the $\nu_e$ hypothesis to explain the LEE observed in the MiniBooNE experiment is disfavored at a significance level of more than 2.6$\sigma$ (3.0$\sigma$) considering MiniBooNE's full (statistical) uncertainties.

135 data tables

Fully contained $\nu_e$CC data, signal, background, and LEE(x=1) predictions constrained by the $\nu_e$CC PC, $\nu_\mu$CC FC, $\nu_\mu$CC PC, $\nu_\mu$CC $\pi^0$ FC, $\nu_\mu$CC $\pi^0$ PC, and NC $\pi^0$ channels under a LEE(x=0) hypothesis. Note that here we show the sum of the constrained signal and constrained background; due to correlations between signal and background, this is not identical to constraining after summing signal and background, but the difference here is minimal. Note that the rightmost bin is an overflow bin, containing all events with reconstructed neutrino energy greater than 2.5 GeV. The background includes neutral current events, $\nu_\mu$CC events, events with a true neutrino interaction vertex outside the fiducial volume (3 cm inside the TPC active volume), and cosmic ray backgrounds. The signal includes the remaining intrinsic $\nu_e$CC events. The LEE(x=1) includes the predicted excess from an unfolding of the MiniBooNE LEE under a $\nu_e$CC hypothesis.

Fully contained $\nu_e$CC data, signal, background, and LEE(x=1) predictions constrained by the $\nu_e$CC PC, $\nu_\mu$CC FC, $\nu_\mu$CC PC, $\nu_\mu$CC $\pi^0$ FC, $\nu_\mu$CC $\pi^0$ PC, and NC $\pi^0$ channels under a LEE(x=0) hypothesis. Note that here we show the sum of the constrained signal and constrained background; due to correlations between signal and background, this is not identical to constraining after summing signal and background, but the difference here is minimal. Note that the rightmost bin is an overflow bin, containing all events with reconstructed neutrino energy greater than 2.5 GeV. The background includes neutral current events, $\nu_\mu$CC events, events with a true neutrino interaction vertex outside the fiducial volume (3 cm inside the TPC active volume), and cosmic ray backgrounds. The signal includes the remaining intrinsic $\nu_e$CC events. The LEE(x=1) includes the predicted excess from an unfolding of the MiniBooNE LEE under a $\nu_e$CC hypothesis.

Fully contained $\nu_e$CC data, signal, background, and LEE(x=1) predictions constrained by the $\nu_e$CC PC, $\nu_\mu$CC FC, $\nu_\mu$CC PC, $\nu_\mu$CC $\pi^0$ FC, $\nu_\mu$CC $\pi^0$ PC, and NC $\pi^0$ channels under a LEE(x=0) hypothesis. Note that here we show the sum of the constrained signal and constrained background; due to correlations between signal and background, this is not identical to constraining after summing signal and background, but the difference here is minimal. Note that the rightmost bin is an overflow bin, containing all events with reconstructed neutrino energy greater than 2.5 GeV. The background includes neutral current events, $\nu_\mu$CC events, events with a true neutrino interaction vertex outside the fiducial volume (3 cm inside the TPC active volume), and cosmic ray backgrounds. The signal includes the remaining intrinsic $\nu_e$CC events. The LEE(x=1) includes the predicted excess from an unfolding of the MiniBooNE LEE under a $\nu_e$CC hypothesis.

More…

J / psi and psi-prime production at the CERN p anti-p collider

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Phys.Lett.B 256 (1991) 112-120, 1991.
Inspire Record 300862 DOI 10.17182/hepdata.26999

We have measured the production cross-section times branching ratio for J/ψ→μ + μ − in pp̄ interactions at √ s = 630 GeV in the kinematic range |y|<2.0 and p T >5 GeV /c, BR ( J /ψ→μ + μ − )σ( p p ̄ → J /ψ)=6.18±0.24±0.81 nb . The data sample collected in 1988 and 1989 for an integrated luminosity of 4.7 pb −1 represents a fivefold improvement over the statistics in our earlier study of the J / ψ production process, and the p T distribution which is measured extends to 28 GeV / c . Using event topology we show that the rate for the direct production of J / ψ , via radiative decays of χ states, is larger than that for production via B-hadrons. Production of ψ′ is also studied using the decay modes < ψ ′→ μ + μ − and ψ ′→ J / ψπ + ψ − .

4 data tables

Numerical values supplied by Nick Ellis.

More…

Measurement of the ratio R = sigma(w) Br (W) ---> mu neutrino) / sigma(Z) Br (Z ---> mu mu) and gamma(W) total at the CERN proton - anti-proton collider

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Phys.Lett.B 253 (1991) 503-510, 1991.
Inspire Record 300863 DOI 10.17182/hepdata.29508

An analysis of W and Z boson production at UA1, using 4.66 pb −1 of data from the 1988 and 1989 CERN p p Collider runs at s =0.63 TeV , yields R ≡ σ W Br(W→ μ v)/ σ z Br( Z → μμ )=10.4 −1.5 +1.8 stat.±0.8(syst.) We find R =9.5 −1.0 +1.1 (stat.+syst.) when combining all available UA1 data, in both the electron and muon channel, taken in the period 1983–1989. In the framework of the standard model, the value of R is used to infer the total width of the W boson, Γ W tot =2.18 −0.24 +0.26 (exp.)±0.04(theory) GeV/ c 2 .

1 data table

No description provided.


Studies of Intermediate Vector Boson Production and Decay in {UA1} at the {CERN} Proton - Antiproton Collider

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Z.Phys.C 44 (1989) 15-61, 1989.
Inspire Record 267170 DOI 10.17182/hepdata.15015

An extensive study of production and decay properties of charged and neutral Intermediate Vector Bosons (IVB) at the CERN proton-antiproton collider is presented. Intermediate Vector Bosons were detected in the electron, muon, and tau decay modes at centre-of-mass energies of 0.546 and 0.630 TeV. This paper is a summary, based on all the available data from the UA1 experiment from the running periods 1982–1985. Results are presented and compared with expectations of the Standard Eletroweak Model and QCD-improved Drell-Yan annihilation processes. The general conclusion is that there is an excellent agreement between the predictions of the Standard Model and our measurements.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Beauty production at the CERN p anti-p collider

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Phys.Lett.B 256 (1991) 121-128, 1991.
Inspire Record 302583 DOI 10.17182/hepdata.48531

We report measurements of b-quark and B-hadron production in pp̄ collisions at √ s =630 GeV. We use muon samples to extract beauty production cross-sections over a wide range of transverse momentum in the central rapidity range | y | < 1.5. We compare our results to an O(α s 3 ) QCD prediction and find good agreement over the measured b-quark transverse momentum range 6 GeV / c to 54 GeV / c . Using the shape of the p T and y distribution predicted by QCD to extrapolate our data, we infer a total cross-section for b-quark production at √s=630 GeV of σ( p p ̄ → b b ̄ + X )=19.3±7( exp. )±9( th. μ b .

10 data tables

No description provided.

The cross section is multipled on the B(J/PSI --> MU+ MU-).

No description provided.

More…

A Study of the D* content of jets at the CERN p anti-p collider

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Phys.Lett.B 244 (1990) 566-572, 1990.
Inspire Record 296474 DOI 10.17182/hepdata.49586

We have measured the rate of D ∗± meson production inside the jets produced in p p collisions at √ s = 630 GeV. For jets in the transverse energy range 15< E T <60 GeV we find a production rate of 0.10±0.04±0.03 D ∗± per jet, which is in good agreement with perturbative QCD calculations. In addition, we find that the D ∗± fragmentation distribution is strongly peaked towards low z consistent with gluon splitting as the dominant production mechanism.

1 data table

No description provided.


A Study of the General Characteristics of Proton - anti-Proton Collisions at s**(1/2) = 0.2-TeV to 0.9-TeV

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Nucl.Phys.B 335 (1990) 261-287, 1990.
Inspire Record 280412 DOI 10.17182/hepdata.49590

The general characteristics of inelastic proton-antiproton collisions at the CERN SPS Collider are studied with the UA1 detector using magnetic and calorimetric analysis. Results are presented on charged particle multiplicities and transverse and longitudinal momenta, and on total transverse energy distributions at centre of mass energies ranging from 0.2 to 0.9 TeV.

12 data tables

No description provided.

Invariant cross section of charged hadrons.

Inclusive cross section for single charged hadrons as a function of PT for the pseudorapdity region 0.8 to 4 for centre of mass energy 900 GeV.. Data read from plot.

More…

Measurement of the Bottom Quark Production Cross-Section in Proton - anti-Proton Collisions at s**(1/2) = 0.63-TeV

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Phys.Lett.B 213 (1988) 405, 1988.
Inspire Record 265001 DOI 10.17182/hepdata.29892

We summarize the results obtained in the UA1 experiment on the production of bottom quarks in proton-antiproton collisions at √ s =0.63 TeV. Independent muon data samples are used to determine the bottom quark production cross section in different transverse momentum ranges from 6 to 30 GeV. A recent theoretical calculation to O(α s 3 ) of the inclusive bottom quark transverse momentum spectrum in hadronic collisions shows reasonable agreement with the data. We extrapolate the integral P T distribution to P T =0 and in rapidity to estimate the total cross section forthe production of bottom quark pairs. Assuming the shape in P T and rapidity given by the O(α s 3 ) calcultaion, we obtain σ( p p→b b +X) = 10.2 ±3.3 μb .

1 data table

No description provided.


Measurement of the branching ratio for the process b --> tau- anti-nu/tau X.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Åkesson, P.F. ; et al.
Phys.Lett.B 520 (2001) 1-10, 2001.
Inspire Record 561580 DOI 10.17182/hepdata.49743

The inclusive branching ratio for the process b -> tau nu X has been measured using hadronic Z decays collected by the OPAL experiment at LEP in the years 1992-2000. The result is: BR(b -> tau nu X) = (2.78 +/- 0.18 +/- 0.51)% This measurement is consistent with the Standard Model expectation and puts a constraint of tan(beta) / M(H+/-) < 0.53 GeV-1 at the 95% confidence level on Type II Two Higgs Doublet Models.

1 data table

TAN(BETA) is the two-Higgs-doublet model parameter, while M_H is the mass of charged Higgs.


eta-meson production in proton-proton collisions at excess energies of 40 and 72 MeV

Petren, H. ; Bargholtz, Chr. ; Bashkanov, M. ; et al.
Phys.Rev.C 82 (2010) 055206, 2010.
Inspire Record 882234 DOI 10.17182/hepdata.60320

The production of η mesons in proton-proton collisions has been studied using the WASA detector at the CELSIUS storage ring at excess energies of Q=40 MeV and Q=72 MeV. The η was detected through its 2γ decay in a near-4π electromagnetic calorimeter, whereas the protons were measured by a combination of straw chambers and plastic scintillator planes in the forward hemisphere. About 6.9×104 and 9.3×104 events were found at Q=40 MeV and Q=72 MeV, respectively, with background contributions of less than 5%. A simple parametrization of the production cross section in terms of low partial waves was used to evaluate the acceptance corrections. Strong evidence was found for the influence of higher partial waves. The Dalitz plots show the presence of p waves in both the pp and the η{pp} systems and the angular distributions of the η in the center-of-mass frame suggest the influence of d-wave η mesons.

6 data tables

Differential cross section for pp -> pp eta at proton beam energies of 1360 and 1445 MeV (excess energies of of 40 and 72 MeV). The angle theta* is that between the eta momentum and that of the beam in the overall CM system. The error shown in the table is the combined statistical and systematic uncertainty, excluding the overall normalization error.

Differential cross section for pp -> pp eta at proton beam energies of 1360 and 1445 MeV (excess energies of of 40 and 72 MeV). The angle theta** is that between the pp relative momentum and that of the eta in the diproton rest frame. The error shown in the table is the combined statistical and systematic uncertainty, excluding the overall normalization error.

Differential cross section for pp -> pp eta at a proton beam energy of 1360 MeV (excess energy Q = 40 MeV) with respect to the square of the final pp invariant mass. Note the change in units with respect to the figure.

More…

Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 383-389, 2012.
Inspire Record 1115721 DOI 10.17182/hepdata.59737

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003<x<0.7. The new measurements have small statistical and systematic uncertainties of a few percent and confirm with considerably better accuracy the previous COMPASS measurement. The Sivers asymmetry is found to be compatible with zero for negative hadrons and positive for positive hadrons, a clear indication of a spin-orbit coupling of quarks in a transversely polarised proton. As compared to measurements at lower energy, a smaller Sivers asymmetry for positive hadrons is found in the region x > 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong dependence on the four-momentum transfer to the nucleon, in agreement with the most recent calculations.

54 data tables

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

More…

$J/\psi$ suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 109 (2012) 072301, 2012.
Inspire Record 1088222 DOI 10.17182/hepdata.60297

The ALICE experiment has measured the inclusive J/$\psi$ production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}} } = 2.76$ TeV down to zero transverse momentum in the rapidity range $2.5 < y < 4$. A suppression of the inclusive J/$\psi$ yield in Pb-Pb is observed with respect to the one measured in pp collisions scaled by the number of binary nucleon-nucleon collisions. The nuclear modification factor, integrated over the 0-80% most central collisions, is $0.545 \pm 0.032 \rm{(stat.)} \pm 0.083 \rm{(syst.)}$ and does not exhibit a significant dependence on the collision centrality. These features appear significantly different from measurements at lower collision energies. Models including J/$\psi$ production from charm quarks in a deconfined partonic phase can describe our data.

2 data tables

Jpsi Nuclear Modification Factor (Raa) measured in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV in 2.5 < y < 4 and pt > 0 GeV/c, as a function of - the average number of participating nucleons (<Npart>), - the average number of participating nucleons (<Npart,w>) weigthed by the average number of binary collisions, - the mid-rapidity charged-particle density measured at pseudo-rapidity eta = 0 dNch,w/deta|eta=0 weigthed by the average number of binary collisions.

Centrality integrated (0%-80%) inclusive Jpsi Nuclear Modification Factor (Raa) measured in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV as a function of rapidity for two transverse momentum ranges.


Suppression of high transverse momentum D mesons in central Pb--Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 09 (2012) 112, 2012.
Inspire Record 1093488 DOI 10.17182/hepdata.60103

The production of the prompt charm mesons $D^0$, $D^+$, $D^{*+}$, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the LHC, at a centre-of-mass energy $\sqrt{s_{NN}}=2.76$ TeV per nucleon--nucleon collision. The $p_{\rm T}$-differential production yields in the range $2<p_{\rm T}<16$ GeV/c at central rapidity, $|y|<0.5$, were used to calculate the nuclear modification factor $R_{AA}$ with respect to a proton-proton reference obtained from the cross section measured at $\sqrt{s}=7$ TeV and scaled to $\sqrt{s}=2.76$ TeV. For the three meson species, $R_{AA}$ shows a suppression by a factor 3-4, for transverse momenta larger than 5 GeV/c in the 20% most central collisions. The suppression is reduced for peripheral collisions.

19 data tables

The transverse momentum distribution for prompt D0 mesons in the Centrality range 0-20%. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

The transverse momentum distribution for prompt D0 mesons in the Centrality range 40-80%. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

The transverse momentum distribution for prompt D+ mesons in the Centrality range 0-20%. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

More…

Inclusive Measurement of Diffractive Deep-Inelastic Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 72 (2012) 2074, 2012.
Inspire Record 1094384 DOI 10.17182/hepdata.60030

The diffractive process ep \rightarrow eXY, where Y denotes a proton or its low mass excitation with MY < 1.6 GeV, is studied with the H1 experiment at HERA. The analysis is restricted to the phase space region of the photon virtuality 3 \leq Q2 \leq 1600 GeV2, the square of the four-momentum transfer at the proton vertex |t| < 1.0 GeV2 and the longitudinal momentum fraction of the incident proton carried by the colourless exchange xIP < 0.05. Triple differential cross sections are measured as a function of xIP, Q2 and beta = x/xIP where x is the Bjorken scaling variable. These measurements are made after selecting diffractive events by demanding a large empty rapidity interval separating the final state hadronic systems X and Y . High statistics measurements covering the data taking periods 1999-2000 and 2004-2007 are combined with previously published results in order to provide a single set of diffractive cross sections from the H1 experiment using the large rapidity gap selection method. The combined data represent a factor between three and thirty increase in statistics with respect to the previously published results. The measurements are compared with predictions from NLO QCD calculations based on diffractive parton densities and from a dipole model. The proton vertex factorisation hypothesis is tested.

57 data tables

The reduced diffractive cross section multiplied by X_Pomeron at XP=0.0003 and Q^2=3.5 GeV^2 . The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.

The reduced diffractive cross section multiplied by X_Pomeron at XP=0.0003 and Q^2=5.0 GeV^2 . The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.

The reduced diffractive cross section multiplied by X_Pomeron at XP=0.0003 and Q^2=6.5 GeV^2 . The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.

More…

Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 376-382, 2012.
Inspire Record 1115720 DOI 10.17182/hepdata.59732

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Collins asymmetry of the proton was extracted in the Bjorken x range 0.003<x<0.7. These new measurements confirm with higher accuracy previous measurements from the COMPASS and HERMES collaborations, which exhibit a definite effect in the valence quark region. The asymmetries for negative and positive hadrons are similar in magnitude and opposite in sign. They are compatible with model calculations in which the u-quark transversity is opposite in sign and somewhat larger than the d-quark transversity distribution function. The asymmetry is extracted as a function of Bjorken $x$, the relative hadron energy $z$ and the hadron transverse momentum p_T^h. The high statistics and quality of the data also allow for more detailed investigations of the dependence on the kinematic variables. These studies confirm the leading-twist nature of the Collins asymmetry.

54 data tables

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

More…

Measurement of electrons from semileptonic heavy-flavour hadron decays in pp collisions at \sqrt{s} = 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.D 86 (2012) 112007, 2012.
Inspire Record 1115824 DOI 10.17182/hepdata.59998

The differential production cross section of electrons from semileptonic heavy-flavour hadron decays has been measured at mid-rapidity ($|y| < 0.5$) in proton-proton collisions at $\sqrt{s} = 7$ TeV with ALICE at the LHC. Electrons were measured in the transverse momentum range 0.5 $<p_{\rm T}<$ 8 GeV/$c$. Predictions from a fixed order perturbative QCD calculation with next-to-leading-log resummation agree with the data within the theoretical and experimental uncertainties.

1 data table

Double differential cross section for heavy-flavour electron production as a function of transverse momentum. The systematic error does not include the error on the Luminosity (3.5%).


Exclusive Measurement of the $pp \to nn\pi^+\pi^+$ Reaction at 1.1 GeV

The CELSIUS/WASA collaboration Skorodko, T. ; Bashkanov, M. ; Bogoslawsky, D. ; et al.
Eur.Phys.J.A 47 (2011) 108, 2011.
Inspire Record 879711 DOI 10.17182/hepdata.63827

First exclusive data for the $pp \to nn\pi^+\pi^+$ reaction have been obtained at CELSIUS with the WASA detector setup at a beam energy of $T_p$ = 1.1 GeV. Total and differential cross sections disagree with theoretical calculations, which predict the $\Delta\Delta$ excitation to be the dominant process at this beam energy. Instead the data require the excitation of a higher-lying $\Delta$ state, most likely the $\Delta(1600)$, to be the leading process.

9 data tables

Total cross section.

Distribution of the invariant mass of the PI+PI+ system.

Distribution of the cosine of the PI+_PI+ opening angle DELTA at an incident kinetic energy of 1.1 GeV.

More…

Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

43 data tables

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

More…

Long-range angular correlations on the near and away side in p-Pb collisions at sqrt(sNN) = 5.02 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 719 (2013) 29-41, 2013.
Inspire Record 1206610 DOI 10.17182/hepdata.60292

Angular correlations between charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV for transverse momentum ranges within 0.5 < $p_{\rm T}^{\rm assoc}$ < $p_{\rm T}^{\rm trig}$ < 4 GeV/$c$. The correlations are measured over two units of pseudorapidity and full azimuthal angle in different intervals of event multiplicity, and expressed as associated yield per trigger particle. Two long-range ridge-like structures, one on the near side and one on the away side, are observed when the per-trigger yield obtained in low-multiplicity events is subtracted from the one in high-multiplicity events. The excess on the near-side is qualitatively similar to that recently reported by the CMS collaboration, while the excess on the away-side is reported for the first time. The two-ridge structure projected onto azimuthal angle is quantified with the second and third Fourier coefficients as well as by near-side and away-side yields and widths. The yields on the near side and on the away side are equal within the uncertainties for all studied event multiplicity and $p_{\rm T}$ bins, and the widths show no significant evolution with event multiplicity or $p_{\rm T}$. These findings suggest that the near-side ridge is accompanied by an essentially identical away-side ridge.

4 data tables

The Fourier coefficient V2 for different multiplicity classes and overlapping PT_trig and PT_assoc intervals. Note that all multiplicity classes have the values from the 60-100% multiplicity class subtracted.

The Fourier coefficient V3 for different multiplicity classes and overlapping PT_trig and PT_assoc intervals. Note that all multiplicity classes have the values from the 60-100% multiplicity class subtracted.

The near-side ridge yields per unit pseudorapidiy difference between the trigger and associated particle in regions of differing PT_trig and PT_assoc bins for different multiplicity classes. Note that all multiplicity classes have the values from the 60-100% multiplicity class subtracted.

More…

Measurement of Production Properties of Positively Charged Kaons in Proton-Carbon Interactions at 31 GeV/c

The NA61/SHINE collaboration Abgrall, N. ; Aduszkiewicz, A. ; Anticic, T. ; et al.
Phys.Rev.C 85 (2012) 035210, 2012.
Inspire Record 1079585 DOI 10.17182/hepdata.59717

Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high energy tail of the T2K beam. The results are presented as a function of laboratory momentum in 2 intervals of the laboratory polar angle covering the range from 20 up to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published pion results and the new kaon data, the K+/\pi+ ratios are computed.

2 data tables

The measured K+ production cross section and the K+/PI+ cross section ratio for the angular range 20 to 140 mrad. The errors on the ratios are statistical only.

The measured K+ production cross section and the K+/PI+ cross section ratio for the angular range 140 to 240 mrad. The errors on the ratios are statistical only.


Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb--Pb Collisions at $\sqrt{s_{\rm{NN}}} = 2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 720 (2013) 52-62, 2013.
Inspire Record 1127497 DOI 10.17182/hepdata.59944

The inclusive transverse momentum ($p_{\rm T}$) distributions of primary charged particles are measured in the pseudo-rapidity range $|\eta|<0.8$ as a function of event centrality in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}=2.76$ TeV with ALICE at the LHC. The data are presented in the $p_{\rm T}$ range $0.15<p_{\rm T}<50$ GeV/$c$ for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor $R_{\rm{AA}}$ using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-$p_{\rm T}$ particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with $R_{\rm{AA}}\approx0.13$ at $p_{\rm T}=6$-7 GeV/$c$. Above $p_{\rm T}=7$ GeV/$c$, there is a significant rise in the nuclear modification factor, which reaches $R_{\rm{AA}} \approx0.4$ for $p_{\rm T}>30$ GeV/$c$. In peripheral collisions (70-80%), the suppression is weaker with $R_{\rm{AA}} \approx 0.7$ almost independently of $p_{\rm T}$. The measured nuclear modification factors are compared to other measurements and model calculations.

30 data tables

Normalized differential primary charged particle yield in the centrality interval 0-5%.

Normalized differential primary charged particle yield in the centrality interval 5-10%.

Normalized differential primary charged particle yield in the centrality interval 10-20%.

More…