Presented is the search for anomalous Higgs boson decays into two axion-like particles (ALPs) using the full Run 2 data set of 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment. The ALPs are assumed to decay into two photons, providing sensitivity to recently proposed models that could explain the $(g-2)_\mu$ discrepancy. This analysis covers an ALP mass range from 100 MeV to 62 GeV and ALP-photon couplings in the range $10^{-5}\, \text{TeV}^{-1}
Cut-flow and number of events in a region with $110 \text{ GeV} <m_{aa}<130 \text{ GeV}$ for selected signal samples
Overview of relative systematic uncertainties on the signal normalization for selected couplings and mass points in the dominant categories. All photon related uncertainties are summarized under "standard photon", while all customised photon related uncertainties (e.g. displaced photons, NN-based photon IDs) are summarized under "custom photon".
Upper limits on $\mathcal{B}(H\rightarrow aa\rightarrow 4\gamma)$ at 95% CL as a function of the axion mass and for ALP-photon coupling $C_{a\gamma\gamma}=1$.
This paper presents the measurement of fiducial and differential cross sections for both the inclusive and electroweak production of a same-sign $W$-boson pair in association with two jets ($W^\pm W^\pm jj$) using 139 fb$^{-1}$ of proton-proton collision data recorded at a centre-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity difference. The measured fiducial cross sections for electroweak and inclusive $W^\pm W^\pm jj$ production are $2.92 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb and $3.38 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons $H^{\pm\pm}$ that are produced in vector-boson fusion processes and decay into a same-sign $W$ boson pair is performed. The largest deviation from the Standard Model occurs for an $H^{\pm\pm}$ mass near 450 GeV, with a global significance of 2.5 standard deviations.
Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\ell\ell}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 11.
Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{T}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 12.
Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{jj}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 13.
A search is reported for long-lived dark photons with masses between 0.1 GeV and 15 GeV, from exotic decays of Higgs bosons produced via vector-boson-fusion. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are probed. This search uses the full LHC Run 2 (2015-2018) data sample collected in proton-proton collisions at $\sqrt{s}=13$ TeV, corresponding to an integrated luminosity of 139 $fb^{-1}$. Dominant backgrounds from Standard Model processes and non-collision sources are estimated by using data-driven techniques. The observed event yields in the signal regions are consistent with the expected background. Upper limits on the Higgs boson to dark photon branching fraction are reported as a function of the dark-photon mean proper decay length or of the dark-photon mass and the coupling between the Standard Model and the potential dark sector. This search is combined with previous ATLAS searches obtained in the gluon-gluon fusion and \textit{WH} production modes. A branching fraction above 10% is excluded at 95% CL for a 125 GeV Higgs boson decaying into two dark photons for dark-photon mean proper decay lengths between 173 and 1296 mm and mass of 10 GeV.
Observed 95% CL upper limits on B(H→ 2γ<sub>d</sub>+X) for different γ<sub>d</sub> masses and a 125 GeV Higgs boson, as a function of the dark-photon mean proper decay length cτ. The limits are shown for the SR<sub>μ</sub> search channel, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio is larger than unity.
Observed 95% CL upper limits on B(H→ 2γ<sub>d</sub>+X) for different γ<sub>d</sub> masses and a 125 GeV Higgs boson, as a function of the dark-photon mean proper decay length cτ. The limits are shown for the SR<sub>c</sub><sup>L</sup> search channel, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio is larger than unity.
Observed 95% CL upper limits on B(H→ 2γ<sub>d</sub>+X) for different γ<sub>d</sub> masses and a 125 GeV Higgs boson, as a function of the dark-photon mean proper decay length cτ. The limits are shown for the SR<sub>c</sub><sup>H</sup> search channel, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio is larger than unity.
A combination of searches for a new resonance decaying into a Higgs boson pair is presented, using up to 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the LHC. The combination includes searches performed in three decay channels: $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b}\gamma\gamma$. No excess above the expected Standard Model background is observed and upper limits are set at the 95% confidence level on the production cross section of Higgs boson pairs originating from the decay of a narrow scalar resonance with mass in the range 251 GeV-5 TeV. The observed (expected) limits are in the range 0.96-600 fb (1.2-390 fb). The limits are interpreted in the Type-I Two-Higgs-Doublet Model and the Minimimal Supersymmetric Standard Model, and constrain parameter space not previously excluded by other searches.
Local p-value as a function of the resonance mass $m_{X}$. Some table entries are empty because resonance masses from 251 GeV to 5 TeV are considered, whereas some channels only use masses in a certain, more restricted, range.
Observed significance as a function of the resonance $m_{X}$. Some table entries are empty because resonance masses from 251 GeV to 5 TeV are considered, whereas some channels only use masses in a certain, more restricted, range.
Observed and expected upper limits at the 95% CL on the resonant Higgs boson pair production cross section as a function of the resonance mass $m_{X}$. Some table entries are empty because resonance masses from 251 GeV to 5 TeV are considered, whereas some channels only use masses in a certain, more restricted, range.
We report the systematic measurement of protons and light nuclei production in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The transverse momentum ($p_{T}$) spectra of protons ($p$), deuterons ($d$), tritons ($t$), $^{3}\mathrm{He}$, and $^{4}\mathrm{He}$ are measured from mid-rapidity to target rapidity for different collision centralities. We present the rapidity and centrality dependence of particle yields ($dN/dy$), average transverse momentum ($\langle p_{T}\rangle$), yield ratios ($d/p$, $t/p$,$^{3}\mathrm{He}/p$, $^{4}\mathrm{He}/p$), as well as the coalescence parameters ($B_2$, $B_3$). The 4$\pi$ yields for various particles are determined by utilizing the measured rapidity distributions, $dN/dy$. Furthermore, we present the energy, centrality, and rapidity dependence of the compound yield ratios ($N_{p} \times N_{t} / N_{d}^{2}$) and compare them with various model calculations. The physics implications of those results on the production mechanism of light nuclei and on QCD phase structure are discussed.
Weak decay feed-down fraction of protons (%) at different centralities in Au+Au collisions at $\sqrt{s_{NN}}$ = 3 GeV. The statistical and systematic uncertainties are shown respectively.
Transverse momentum spectra of inclusive protons in 0-10% Au+Au collisions at $\sqrt{s_{NN}}$ = 3 GeV. The statistical and systematic uncertainties are shown respectively.
Transverse momentum spectra of inclusive protons in 10-20% Au+Au collisions at $\sqrt{s_{NN}}$ = 3 GeV. The statistical and systematic uncertainties are shown respectively.
This paper presents a search for a new $Z^\prime$ resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at $\sqrt{s}=13$ TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95 % confidence-level upper limits on the production cross-section times branching ratio of the $Z^\prime$ to dark quarks as a function of the $Z^\prime$ mass for various dark-quark scenarios.
Distribution of the di-jet invariant mass, $m_{\mathrm{JJ}}$ for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z'}=2.5$ TeV), shown after applying the preselections described in the text. The simulated background is normalised to the data and the signals are normalised to a production cross-section of 10 fb.
Distributions of the number of tracks associated to the leading jet, $n_{track,1}$, for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z^\prime}=2.5$ TeV), shown after applying the preselections described in the text. All distributions are normalised to unity. The uncertainty band around the background prediction corresponds to the modelling uncertainty described in Section 6.
Distributions of the number of tracks associated to the subleading jet, $n_{track,2}$, for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z^\prime}=2.5$ TeV), shown after applying the preselections described in the text. All distributions are normalised to unity. The uncertainty band around the background prediction corresponds to the modelling uncertainty described in Section 6.
A search for a heavy CP-odd Higgs boson, $A$, decaying into a $Z$ boson and a heavy CP-even Higgs boson, $H$, is presented. It uses the full LHC Run 2 dataset of $pp$ collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector, corresponding to an integrated luminosity of $140$ fb$^{-1}$. The search for $A\to ZH$ is performed in the $\ell^+\ell^- t\bar{t}$ and $\nu\bar{\nu}b\bar{b}$ final states and surpasses the reach of previous searches in different final states in the region with $m_H>350$ GeV and $m_A>800$ GeV. No significant deviation from the Standard Model expectation is found. Upper limits are placed on the production cross-section times the decay branching ratios. Limits with less model dependence are also presented as functions of the reconstructed $m(t\bar{t})$ and $m(b\bar{b})$ distributions in the $\ell^+\ell^- t\bar{t}$ and $\nu\bar{\nu}b\bar{b}$ channels, respectively. In addition, the results are interpreted in the context of two-Higgs-doublet models.
<b><u>Overview of HEPData Record</u></b><br> <b>Upper limits on cross-sections:</b> <ul> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=0.5">95% CL upper limit on ggF A->ZH(tt) production for tanb=0.5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=1">95% CL upper limit on ggF A->ZH(tt) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=5">95% CL upper limit on ggF A->ZH(tt) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=1">95% CL upper limit on bbA A->ZH(tt) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=5">95% CL upper limit on bbA A->ZH(tt) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=10">95% CL upper limit on bbA A->ZH(tt) production for tanb=10</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=0.5">95% CL upper limit on ggF A->ZH(bb) production for tanb=0.5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=1">95% CL upper limit on ggF A->ZH(bb) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=5">95% CL upper limit on ggF A->ZH(bb) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=1">95% CL upper limit on bbA A->ZH(bb) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=5">95% CL upper limit on bbA A->ZH(bb) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=10">95% CL upper limit on bbA A->ZH(bb) production for tanb=10</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=20">95% CL upper limit on bbA A->ZH(bb) production for tanb=20</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=m(tt),L3hi_Zin,ggF-production">m(tt) distribution in the L3hi_Zin region of the lltt channel</a> <li><a href="?table=m(bb),2tag,0L,ggF-production">m(bb) distribution in the 2 b-tag 0L region of the vvbb channel</a> <li><a href="?table=m(bb),3ptag,0L,bbA-production">m(bb) distribution in the 3p b-tag 0L region of the vvbb channel</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin450,bbA-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis with the bbA signal shown</a> <li><a href="?table=m(tt),L3hi_Zin,bbA-production">m(tt) distribution in the L3hi_Zin region of the lltt channel with the bbA signal shown</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin350,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=350 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin400,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=400 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin450,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin500,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=500 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin550,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=550 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin600,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=600 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin700,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=700 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin800,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin130,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=130 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin150,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=150 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin200,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=200 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin250,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=250 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin300,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin350,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=350 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin400,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=400 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin450,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=450 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin500,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=500 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin600,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=600 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin700,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=700 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin800,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin130,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=130 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin150,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=150 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin200,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=200 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin250,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=250 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin300,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin350,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=350 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin400,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=400 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin450,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=450 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin500,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=500 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin600,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=600 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin700,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=700 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin800,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,2L">Fit discriminant mT(VH) in the 2L region of the vvbb channel</a> <li><a href="?table=mTVH,2tag,em">Fit discriminant mT(VH) in the em region of the vvbb channel</a> <li><a href="?table=mTVH,3ptag,2L">Fit discriminant mT(VH) in the 2L region of the vvbb channel</a> <li><a href="?table=mTVH,3ptag,em">Fit discriminant mT(VH) in the em region of the vvbb channel</a> <li><a href="?table=lep3pt,L3hi_Zin">pT(lepton,3) distribution in the L3hi_Zin region of the lltt channel</a> <li><a href="?table=etaHrestVH,L3hi_Zin">eta(H,VH rest frame) distribution in the signal region of the lltt channel</a> <li><a href="?table=ETmiss,2tag,0L">ETmiss distribution in the 2 b-tag signal region of the vvbb channel</a> <li><a href="?table=mtopnear,2tag,0L">m(top,near) distribution in the 2 b-tag signal region of the vvbb channel</a> <li><a href="?table=ETmiss,3ptag,0L">ETmiss distribution in the 3p b-tag signal region of the vvbb channel</a> <li><a href="?table=mtopnear,3ptag,0L">m(top,near) distribution in the 3p b-tag signal region of the vvbb channel</a> </ul> <b>Observed local significance:</b> <ul> <li><a href="?table=Local%20significance,%20lltt,%20ggF%20production">ggF A->ZH->lltt signals</a> <li><a href="?table=Local%20significance,%20lltt,%20bbA%20production">bbA A->ZH->lltt signals</a> <li><a href="?table=Local%20significance,%20vvbb,%20ggF%20production">ggF A->ZH->vvbb signals</a> <li><a href="?table=Local%20significance,%20vvbb,%20bbA%20production">bbA A->ZH->vvbb signals</a> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="?table=Acceptance*efficiency,%20lltt,%20ggF%20production">ggF A->ZH->lltt signals</a> <li><a href="?table=Acceptance*efficiency,%20lltt,%20bbA%20production">bbA A->ZH->lltt signals</a> <li><a href="?table=Acceptance*efficiency,%20vvbb,%20ggF%20production">ggF A->ZH->vvbb signals</a> <li><a href="?table=Acceptance*efficiency,%20vvbb,%20bbA%20production">bbA A->ZH->vvbb signals</a> </ul>
The distribution of the fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
We report on the charged-particle multiplicity dependence of net-proton cumulant ratios up to sixth order from $\sqrt{s}=200$ GeV $p$+$p$ collisions at the Relativistic Heavy Ion Collider (RHIC). The measured ratios $C_{4}/C_{2}$, $C_{5}/C_{1}$, and $C_{6}/C_{2}$ decrease with increased charged-particle multiplicity and rapidity acceptance. Neither the Skellam baselines nor PYTHIA8 calculations account for the observed multiplicity dependence. In addition, the ratios $C_{5}/C_{1}$ and $C_{6}/C_{2}$ approach negative values in the highest-multiplicity events, which implies that thermalized QCD matter may be formed in $p$+$p$ collisions.
(c) Charged-particle multiplicity distribution.
(d) Event-by-event net-proton multiplicity distributions for $|y|<0.5$ and $0.4<p_{\rm{T}}<2.0$ GeV/$c$ at two ranges of charged particle multiplicity as indicated in the legend.
Net-proton cumulant ratios, (a) $C_{2}/C_{1}$, (b) $C_{3}/C_{2}$, (c) $C_{4}/C_{2}$, (d) $C_{5}/C_{1}$, and (e) $C_{6}/C_{2}$ as a function of charged-particle multiplicity from $\sqrt{s}=200$ GeV $p$+$p$ collisions. Black solid lines and red bands represent the statistical and systematic uncertainties, respectively. Cyan points represent event averages for $3 < m_{\rm ch}^{\rm TPC} < 30$, and they are plotted at the corresponding value of $m_{\rm ch}^{\rm TPC}$. The uncertainties on the cyan points are smaller than the marker size. The Skellam baselines are shown as dotted lines. The results of the PYTHIA8 calculations are shown by hatched-golden bands. The golden bands at $m_{\rm ch}^{\rm TPC}\approx 6$ are the results from the PYTHIA8 calculations averaged over multiplicities.
For the search of the chiral magnetic effect (CME), STAR previously presented the results from isobar collisions (${^{96}_{44}\text{Ru}}+{^{96}_{44}\text{Ru}}$, ${^{96}_{40}\text{Zr}}+{^{96}_{40}\text{Zr}}$) obtained through a blind analysis. The ratio of results in Ru+Ru to Zr+Zr collisions for the CME-sensitive charge-dependent azimuthal correlator ($\Delta\gamma$), normalized by elliptic anisotropy ($v_{2}$), was observed to be close to but systematically larger than the inverse multiplicity ratio. The background baseline for the isobar ratio, $Y = \frac{(\Delta\gamma/v_{2})^{\text{Ru}}}{(\Delta\gamma/v_{2})^{\text{Zr}}}$, is naively expected to be $\frac{(1/N)^{\text{Ru}}}{(1/N)^{\text{Zr}}}$; however, genuine two- and three-particle correlations are expected to alter it. We estimate the contributions to $Y$ from those correlations, utilizing both the isobar data and HIJING simulations. After including those contributions, we arrive at a final background baseline for $Y$, which is consistent with the isobar data. We extract an upper limit for the CME fraction in the $\Delta\gamma$ measurement of approximately $10\%$ at a $95\%$ confidence level on in isobar collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV, with an expected $15\%$ difference in their squared magnetic fields.
Figure 1a, upper panel, full-event
Figure 1a, lower panel, full-event
Figure 1b, upper panel, subevent
At the origin of the Universe, asymmetry between the amount of created matter and antimatter led to the matter-dominated Universe as we know today. The origins of this asymmetry remain not completely understood yet. High-energy nuclear collisions create conditions similar to the Universe microseconds after the Big Bang, with comparable amounts of matter and antimatter. Much of the created antimatter escapes the rapidly expanding fireball without annihilating, making such collisions an effective experimental tool to create heavy antimatter nuclear objects and study their properties, hoping to shed some light on existing questions on the asymmetry between matter and antimatter. Here we report the first observation of the antimatter hypernucleus \hbox{$^4_{\bar{\Lambda}}\overline{\hbox{H}}$}, composed of a $\bar{\Lambda}$ , an antiproton and two antineutrons. The discovery was made through its two-body decay after production in ultrarelativistic heavy-ion collisions by the STAR experiment at the Relativistic Heavy Ion Collider. In total, 15.6 candidate \hbox{$^4_{\bar{\Lambda}}\overline{\hbox{H}}$} antimatter hypernuclei are obtained with an estimated background count of 6.4. The lifetimes of the antihypernuclei \hbox{$^3_{\bar{\Lambda}}\overline{\hbox{H}}$} and \hbox{$^4_{\bar{\Lambda}}\overline{\hbox{H}}$} are measured and compared with the lifetimes of their corresponding hypernuclei, testing the symmetry between matter and antimatter. Various production yield ratios among (anti)hypernuclei and (anti)nuclei are also measured and compared with theoretical model predictions, shedding light on their production mechanisms.
Invariant mass distributions of $^3\hbox{He}+\pi^-$ (A), $^3\overline{\hbox{He}}+\pi^+$ (B), $^4\hbox{He}+\pi^-$ (C) and $^4\overline{\hbox{He}}+\pi^+$ (D). The solid bands mark the signal invariant mass regions. The obtained signal count ($N_{\rm Sig}$), background count ($N_{\rm Bg}$), and signal significance are listed in each panel.
Invariant mass distributions of $^3\hbox{He}+\pi^-$ (A), $^3\overline{\hbox{He}}+\pi^+$ (B), $^4\hbox{He}+\pi^-$ (C) and $^4\overline{\hbox{He}}+\pi^+$ (D). The solid bands mark the signal invariant mass regions. The obtained signal count ($N_{\rm Sig}$), background count ($N_{\rm Bg}$), and signal significance are listed in each panel.
Invariant mass distributions of $^3\hbox{He}+\pi^-$ (A), $^3\overline{\hbox{He}}+\pi^+$ (B), $^4\hbox{He}+\pi^-$ (C) and $^4\overline{\hbox{He}}+\pi^+$ (D). The solid bands mark the signal invariant mass regions. The obtained signal count ($N_{\rm Sig}$), background count ($N_{\rm Bg}$), and signal significance are listed in each panel.