About 45000 interactions of antiprotons of kinetic energy between 57 and 170 MeV have been measured in a deuterium bubble chamber. Total and annihilation cross-sections have been determined at 9 values of the antiproton energy together with the differential crosssection dσ/dt for scattering events. In spite of the peculiar behaviour of the deuteron target at these low energies a reliable measure of the antiproton-neutron annihilation cross-section has been obtained.
INELASTIC (ANNILATION + CHARGE EXCHANGE), SCATTERING (ELASTIC + INELASTIC) AND TOTAL CROSS SECTIONS. AUTHORS ALSO GIVE TOPOLOGICAL DECOMPOSITION OF THESE CROSS SECTIONS.
SCATTERED ANTIPROTON ANGULAR DISTRIBUTION. THE OPTICAL POINT AT T=0 IS CALCULATED FROM THE TOTAL CROSS SECTION. SEPARATION INTO SCATTERING ON PROTONS AND ON NEUTRONS IS IMPOSSIBLE.
We have measured cross sections, rapidity and transverse momentum distributions, and vector meson polarization for the reactions pp→ ϱ o +anything, pp→ ω +charged particles, and pp → K ∗± + anything at incident laboratory momenta of 12 and 24 GeV/ c . We discuss various consequences of our results as well as possible connections with lepton pair production.
No description provided.
DATA OBTAINED FROM FIGURE BY A.A. LEBEDEV.
DATA OBTAINED FROM FIGURE BY A.A. LEBEDEV.
The study of 620 hadron pairs produced in the s -range (1.44−9.0) GeV 2 , has yielded 110 collinear hadronic events. Their identification in terms of π and K mesons allows the determination of the time-like electromagnetic from factors of these pseudoscalar mesons in the above time-like range. The total number of (e + e − ) events observed in the same experimental conditions is 18 048.
No description provided.
No description provided.
An analysis of the reaction π + n→ ω p in a 6.0 GeV/ c bubble chamber experiment is presented. The production differential cross section and spin density matrix elements are compared with Regge exchange models.
CORRECTED FOR BACKGROUND.
HELICITY FRAME. T-DEPENDENT BACKGROUND SUBTRACTED.
TRANSVERSITY FRAME. T-DEPENDENT BACKGROUND SUBTRACTED.
The observation of 21 K + K − pairs in 38 hadron pair events produced at 1.5, 1.6, and 1.7 GeV total centre-of-mass energies in e + e − annihilations, establishes that time-like photons produce K pairs and π pairs with comparable rates in this energy range. The K-meson electromagnetic form factor at a mean s -value of 2.4 GeV 2 is measured to be | F K | = 0.50±0.08. The number of e + e − pairs observed in the same angular and energy range is 5148.
No description provided.
In a counter and wire spark chamber experiment with a polarized target, backward kaons were detected, and the Σ + 's identified by a missing-mass technique. An average polarization of −0.08 ± 0.05 was found for −0.2 < u < 0.1 GeV 2 .
THE MEAN POLARIZATION FOR ALL EVENTS IS -0.08 +- 0.05.
The differential cross section for the charge exchange p p → n n has been measured with high statistics at 7.76 GeV/ c and at 5.0 GeV/ c . The 7.76 GeV/ c data show a very narrow [ Δt ⪅ 0.01 (GeV/ c ) 2 ] forward peak superposed on a slow exponential fall-off.
No description provided.
No description provided.
INTEGRATED CROSS SECTIONS FROM EXPONENTIAL FIT.
The electroproduction of a π-meson and of a Δ(1236) nucleon resonance on hydrogen, ep → e πΔ (1236), was investigated in the two charge states π − Δ ++ and π + Δ 0 by measuring the scattered lepton and the produced π-meson in coincidence. The differential cross sections as funcions of W , q 2 , t − t min and ø πq were determine in the following kinematical region: w = (π + δ) 2 = 2.0 − 3.0 GeV , |q 2 | = |(e−e′) 2 | = 0.15 − 0.8 GeV 2 /c 2 , |t − t min | = 0-0.5 GeV 2 /c 2 with t = ( p − δ) 2 , φ πq = 0 − 360° .
W-DEPENDENCE FOR 4.0 GEV INCIDENT POSITRONS.
W-DEPENDENCE FOR 4.9 GEV INCIDENT POSITRONS.
W-DEPENDENCE FOR 5.4 GEV INCIDENT POSITRONS.
In an experiment with the CERN 2m deuterium bubble chamber the reaction K + d→K o pp (1) and the related reaction K + n→K o p (2) are studied at an incident momentum of 4.6 GeV/ c . The cross section for the latter reaction is found to be slightly larger than the cross section for the reaction K − p → K o n at the same energy. The corresponding differential cross sections agree within the rather large uncertainties. The forward amplitude for reaction (2) is predominantly real. Moreover, the total and forward differential charge exchange cross section values are compatible with those predicted on the basis of an SU (3) sum rule. A comparison of the K ± -charge exchange differential cross sections with the predictions of a Regge pole model is also presented.
No description provided.
SMALL -T DEUTERIUM CORRECTION APPLIED USING MC GEE WAVE FUNCTION (PAPER ALSO GIVES UNCORRECTED AND HULTHEN CORRECTED DATA).
We have studied the K ππ system in the 14.3 GeV/ c reactions K − p → K − π + π − p, K − p → K 0 π − π 0 and K − p → K 0 π + π − n . The data have been obtained from a 500 000 picture exposure of the CERN 2m HBC. The first two final states are dominated by Q-production in the Kππ system; there is also an L-signal at M (K ππ ) ∼ 1.75 GeV. The reaction cross sections are compared to K − p data at other energies. We discuss the K ππ mass dependence of the diffractive production slope. Evidence is presented for a Q − p versus Q + p differential cross section cross-over around | t | = 0.17 GeV 2 . A t -channel isospin analysis for the KN → K ∗(890)π N channels in the Q-region shows that the I = 1 exchange amplitude is ⋍ 10% of the dominant I = 0 exchange amplitude. The K ππ decay distributions indicate a predominant J P = 1 + state in the Q-region, and an important J P = 2 − contribution in the L-region. We find neither s -channel nor t -channel helicity conservation at the meson vertex in the Q- or L-regions. The K π angular correlation moments within the K ππ diffractive system are characteristic of K π elastic scattering, suggesting a π -exchange Deck-type production mechanism. There is evidence for a Kf 0 and κπ contribution (where κ is the J P (K π ) = 0 + state) to the diffractive K ππ system. A fit to the K − π + π − and K 0 π − π 0 Dalitz-plot distributions for the Q-re gion indicates that the ratio of K ϱ to K ∗ π decay amplitudes decreases with increasing K ππ mass.
No description provided.