By combining new results obtained at C.M. energies of 1.2 and 1.3 GeV with previous data obtained at lower energies from the e + e − annihilation process e + e − → π + π − π o π o , we get an indication in favour of the existence of a new vector meson of the ϱ type, ϱ' (1250), the first daughter of the ϱ in the predictions of the Veneziano model. Further results on the annihilation process e + e − → π (1600) → π + π − π + π − are also presented.
NOTE THAT ABOVE 1.3 GEV, THE CROSS SECTION VALUES ARE CRITICALLY DEPENDENT ON THE ASSUMPTION OF A PHASE SPACE DISTRIBUTION FOR THE FINAL STATE. NOTE ALSO THAT THE RHOPRIME(1600)0 --> RHO EPSILON(700) --> PI+ PI- PI0 PI0 RESONANT CONTRIBUTION HAS BEEN SUBTRACTED OUT. THIS CORRECTION IS GREATEST (25 PCT) AT 1.5 GEV.
The average multiplicities 〈 n c 〉 and 〈n〉, of charged-plus-neutral pions produced in e + e − collisions, have been determined for total center-of-mass energies ranging from 1.2 to 2.4 GeV. No appreciable multiplicity variation is observed over this energy range, where the mean values 〈; n c 〉 = 3.3 +0.3 −0.2 and 〈 n 〉 = 4.4 +0.4 −0.2 are found.
No description provided.
VALUES OF R CALCULATED FROM TOTAL CROSS SECTION.
None
STATISTICAL ERRORS ONLY.
Multihadron production by electron-positron colliding beams has been investigated for total centre-of-mass energies ranging from 1.2 to 2.4 GeV. The total cross-section, σtot ≡ σ(e+e−→π+π−+ + anything), is of the order of σμμ ≡ σ(e+e−→μ+μ−), with a threshold near 1 GeV. Partial cross-sections for the various channels are also derived. The cross-section of the specific channel e+e−→π+π−π+π− exhibits an energy dependence which is suggestive of a heavier vector meson, ρ' (mρ,≈ 1.6 GeV,Гρ, ≈ 350 Mev), having the same quantum numbers as the ρ-meson. An upper limit is given for the coupling constantfρ′ (fρ′/4π<18, wherefρ′=mρ′2e/gγρ′). Final states withG+ parity are found to be much more abundant than those withG− parity. The average multiplicity (charged plus neutral final-state pions) is found to be betweet 4 and 5 over all the energy range explored.
No description provided.
VALUES OF R CALCULATED FROM TOTAL CROSS SECTION.
No description provided.
None
THIS HADRON PAIR CROSS SECTION PROVIDES ONLY AN UPPER LIMIT TO THE PION FORM FACTOR ABOVE 1.5 GEV SINCE KAON PRODUCTION IS NOT DISTINGUISHED.
We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.
No description provided.
No description provided.
No description provided.
Data are presented for the reaction ep → ep π 0 at a nominal four-momentum transfer squared of 0.5 (GeV/ c ) 2 . The data were obtained using an extracted electron beam from NINA and two magnetic spectrometers for coincidence detection of the electron and proton. Details are given of the experimental method and the results are given for isobar masses in the range 1.19 – 1.73 GeV/ c 2 .
No description provided.
No description provided.
Backward cross sections.
The differential cross sections for γ p→ π + n from hydrogen and the π − π + ratios from deuterium were measured at nine c.m. angles between 30° and 150° for laboratory photon energies between 260 and 800 MeV. A magnetic spectrometer with three layers of scintillation hodoscope was used to detect charged π mesons. The cross section for γ n→ π − p was obtained as a product of d σ d Ω (γ p →π + n ) and the π − π + ratio. The overall features in the cross sections of the two reactions, γ p→ π + n and γ n→ π − p, and in the ratios, π − π + , agree with predictions by Moorhouse, Oberlack and Rosenfeld, and Metcalf and Walker. An investigation of the possible existence of an isotensor current was made and a negative result was found. In detailed balance comparison with the new results on the inverse reaction π − p→ γ n, no apparent violation of time-reversal invariance was observed.
No description provided.
The\(e^ +e^ -\to K_s^0 K^ \pm\pi ^ \mp\) andK+K−π0 cross sections have been measured in the energy interval\(1350 \leqq \sqrt s\leqq 2400\) with the DM2 detector at DCI. The\(K_s^0 K^ \pm\pi ^ \mp\) cross section shows the contribution of an isoscalar vector meson at ≈1650 MeV/c2 in agreement with a previous experiment. The low statisticsK+K−π0 measurement is consistent with the above result.
The K0S K+- PI-+ cross section.
Differential cross sections of proton Compton scattering have been measured in the energy range between 400 MeV and 1050 MeV at C.M.S. angles of 150° and 160°.
No description provided.
No description provided.
No description provided.