The reaction γp→; π + π − p in the energy range 4.1 to 6.2 GeV has been studied with a tagged photon beam incident on a liquid hydrogen target in the DESY one-meter streamer chamber. The reaction is analysed in terms of the longitudinal phase space (LPS) method. The one-pion-exchange model for Δ(1236) production and decay is examined. For the diffractive part of the LPS a dual model with pomeron exchange is investigated. In particular, the s -channel helicity conservation dual model of Dewey and Humpert describes the data well.
No description provided.
CORRECTED FOR LOSSES AT SMALL T (UNLIKE VALUES OF 'REF 1'). BACKGROUND SUBTRACTION ERROR HAS BEEN ADDED QUADRATICALLY TO THE STATISTICAL ERROR.
No description provided.
None
No description provided.
A study of π − p → K ∗ Λ and π − p → K ∗ Σ° at 3.9 GeV /c indicates that the main features of both reactions can be interpreted in terms of simple exchange processes, the first involving both natural and unnatural exchange, the second showing evidence for natural parity exchange only.
No description provided.
We have measured the differential cross-section for the reaction p p → π + Λ − at 5 GeV /c , the π + being in t he cm angular range 0.47 < cos θ p π + cm < 0.98 , corresponding to 0.12 < − t < 2.40 (GeV/ c ) 2 . The angular distribution has a forward peak with a differential cross-section d σ d ω = 4.1 ± 1.6 μ b / sr for 0.94 < cos θ p π + cm < 0.96 .
No description provided.
No description provided.
The differential cross-sections for the annihilation processes p p→π − π + and p p→K − K + have been measured at an incident laboratory momentum at 5 GeV/ c . Strong backward and forward peaks are observed in the π + π − differential cross-sections while the K + K − cross-section is shown to have a peak only for K − going forward. The annihilation cross-sections are compared with the cross-sections for the crossed channel backward processes π ± p→p π ± and K ± p→pK ± .
No description provided.
No description provided.
The elastic scattering of K ± mesons on protons has been studied at 5 GeV/c. A total of about 500 000 events have been measured in the c.m. angular range 17° < θ cm < 165° corresponding to 0.2 < − t < (GeV/ c ) 2 . We observed a K − p backward peak which we have parametrized as d σ /d u = (0.6 ± 0.2) exp [(3.3 ± 0.6) u ] μb /(GeV/c) 2 , while for the K + p backward peak we find d σ /d u = (17.5 ± 1) exp [(3.6 ± 0.2) u ] μb /(GeV/c) 2 . The K − p cross-section falls to about 0.03 μ b ( GeV /c) 2 around − t = 5 (GeV/ c ) 2 , while the K + p cross-section stays in the vicinity of 0.3 μ b ( GeV /c) 2 in the same t -region. The K + p and K − p differential cross-sections have cross-over points at − t = 0.2, 1.1 and about 3.5 (GeV/ c ) 2 .
No description provided.
No description provided.
Antiproton-proton elastic scattering has been measured at 5 GeV/c. A total of 30 000 events were observed in the angular range 17° < θ cm < 136°, corresponding to 0.3 < − t < 7.7 (GeV/ c 2 ). In addition to the known dip at − t = 0.5 ( GeV / c ) 2 , we observe a structure at about − t = 2 (GeV/ c ) 2 and a backward peak with a slope4.1 ± 0.6 (GeV/ c ) 2 . The extrapolated differential cross-section at u = 0 is 1.3 ± 0.8 μ b/(GeV/ c ) 2 .
No description provided.
No description provided.
The differential cross-section for 5 GeV/ cπ + p and π − p elastic scattering have been measured in the c.m. angular region 27° < θ cm < 130° corresponding to 0.5 < | t | < 7.8 (GeV/ c ) 2 . Dips are observed in both reactions at − t = 2.8 and 4.8 (GeV/ c ) 2 where the cross-sections are approximately 0.1 μ b/(GeV/ c ) 2 .
No description provided.
No description provided.
Electron-proton elastic scattering cross sections have been measured to determine the proton electromagnetic form factors at squared four-momentum transfers q 2 between 10 and 50 fm −2 . At these values of q 2 we measured angular distributions between 25° and 110° and in addition at 25° and 35° cross sections for q 2 from 2 to 20 fm −2 using the external electron beam of the Bonn 2.5 GeV electron synchrotron. Our results confirm deviations from the scaling law.
Axis error includes +- 2/2 contribution (NORMALIZATION ERROR).
Axis error includes +- 2/2 contribution (NORMALIZATION ERROR).
Axis error includes +- 2/2 contribution (NORMALIZATION ERROR).
We have made improved measurements of 43.8 ± 0.8, 41.3 ± 0.4 and 39.3 ± 0.8 mb for the p p elastic cross sections at 1.11, 1.33 and 1.52 GeV/ c laboratory momenta respectively. Sharp forward peaks in the differential cross sections with broad secondary maxima agree with previous observations [3–6]. The forward differential cross sections are (11 ± 3)% above the optical point in agreement with real amplitudes extended from lower momenta using dispersion relations [7]. The elastic cross sections do not show any structure in the s -channel. Backward differential cross sections show the onset of a “third diffraction peak” but no evidence for other structure in agreement with earlier experiments [6, 13].
STATISTICAL PLUS SYSTEMATIC ERRORS.
STATISTICAL PLUS SYSTEMATIC ERRORS.
COUNTS WERE MULTIPLIED BY 1.000 TO GET THESE.. TOTAL NUMBER EVENTS= 543. READ FROM GRAPH.