This article describes a determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ from the decay $B^0\to D^{*-}\ell^+\nu_\ell$ using 711 fb$^{-1}$ of Belle data collected near the $\Upsilon(4S)$ resonance. We simultaneously measure the product of the form factor normalization $\mathcal{F}(1)$ and the matrix element $|V_{cb}|$ as well as the three parameters $\rho^2$, $R_1(1)$ and $R_2(1)$, which determine the form factors of this decay in the framework of the Heavy Quark Effective Theory. The results, based on about 120,000 reconstructed $B^0\to D^{*-}\ell^+\nu_\ell$ decays, are $\rho^2=1.214\pm 0.034\pm 0.009$, $R_1(1)=1.401\pm 0.034\pm 0.018$, $R_2(1)=0.864\pm 0.024\pm 0.008$ and $\mathcal{F}(1)|V_{cb}|=(34.6\pm 0.2\pm 1.0)\times 10^{-3}$. The branching fraction of $B^0\to D^{*-}\ell^+\nu_\ell$ is measured at the same time/ we obtain a value of $\mathcal{B}(B^0 \to D^{*-}\ell^+ \nu_\ell) = (4.58 \pm 0.03 \pm 0.26) %$. The errors correspond to the statistical and systematic uncertainties. These results give the most precise determination of the form factor parameters and $\mathcal{F}(1)|V_{cb}|$ to date. In addition, a direct, model-independent determination of the form factor shapes has been carried out.
Continuum-subtracted on-resonance data as a function of the $w$ kinematic variable.
Continuum-subtracted on-resonance data as a function of the $\cos\theta_\ell$ variable.
Continuum-subtracted on-resonance data as a function of the $\cos\theta_\nu$ variable.
Data taken with the Collider Detector at Fermilab (CDF) during the 1988–1989 run of the Tevatron are used to measure the distribution of the center-of-mass (rest frame of the initial state partons) angle between isolated prompt photons and the beam direction. The shape of the angular distribution for photon-jet events is found to be significantly different from that observed in dijet data. The QCD predictions show qualitative agreement with the observed prompt photon angular distribution.
Background subtracted normalised prompt photon angular distribution.
We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.
No description provided.
Forward backward charge asymmetry.
No description provided.
Direct photon production in hadronic events from e+e− annihilation has been studied at s=29 GeV with use of the MAC detector at the PEP storage ring. A charge asymmetry A=(−12.3±3.5)% is observed in the final-state jets. The cross section and the charge asymmetry are in good agreement with the predictions of the fractionally charged quark-parton model. Both the charge asymmetry and total yield have been used to determine values of quark charges. Limits have been established for anomalous sources of direct photons.
No description provided.
No description provided.
A search for supersymmetric electron production via the reaction e+e−→e±γ̃ẽ∓ followed by the decay ẽ∓→e∓γ̃ has been performed with the MAC detector at the electron-positron storage ring PEP. No candidates were found in a sample corresponding to an integrated luminosity of 36.4 pb−1. For a massless γ̃ this corresponds to a lower limit on the ẽ mass of 22.4 GeV/c2 at the 95% confidence level.
No description provided.
No description provided.