None
No description provided.
A study is presented of the process gamma p -->XY, where there is a large rapidity gap between the systems X and Y. Measurements are made of the differential cross section as a function of the invariant mass mx of the system produced at the photon vertex. Results are presented at centre of mass energies of W_gp = 187 GeV and W_gp = 231 GeV, both where the proton dominantly remains intact and, for the first time, where it dissociates. Both the centre of mass energy and the mx~2 dependence of HERA data and those from a fixed target experiment may simultaneously be described in a triple-Regge model. The low mass photon dissociation process is found to be dominated by diffraction, though a sizable subleading contribution is present at larger masses. The pomeron intercept is extracted and found to be alpha_pom(0) = 1.068 \pm 0.016 (stat.) \pm 0.022 (syst.) \pm 0.041 (model), in good agreement with values obtained from total and elastic hadronic and photoproduction cross sections. The diffractive contribution to the process gamma p --> Xp with mx~2 / W_gp~2 < 0.05 is measured to be 22.2 \pm 0.6 (stat.) \pm 2.6 (syst.) \pm 1.7 (model) % of the total gamma p cross section at W_gp = 187 GeV.
Data for proton remaining intact.
Data for proton dissociating.
We report a high precision measurement of the transverse single spin asymmetry $A_N$ at the center of mass energy $\sqrt{s}=200$ GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The $A_N$ was measured in the four-momentum transfer squared $t$ range $0.003 \leqslant |t| \leqslant 0.035$ $\GeVcSq$, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of $A_N$ and its $t$-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this $\sqrt{s}$, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.
The asymmetry $\varepsilon(\varphi)/(P_B + P_Y)$ for various $t$-intervals.
The measured single spin asymmetry $A_N$ for five $-t$ intervals.
Fitted value of $r_5$.
We report a measurement of the diffraction dissociation differential cross section d2σSD/dM2dt for p¯p→p¯X at √s =546 and 1800 GeV, M2/s<0.2 and 0≤-t≤0.4 GeV2. Our results are compared to theoretical predictions and to extrapolations from experimental results at lower energies.
Single diffraction dissociation cross section.
We present results from a measurement of double diffraction dissociation in $\bar pp$ collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width $\Delta\eta^0>3$ (overlapping $\eta=0$) is found to be $4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb}$ [$3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}$] at $\sqrt{s}=1800$ [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.
Cross sections for double diffractive production.
Photon proton cross sections for elastic light vector meson production, σelνp, inelastic diffractive production, σndνp, non-diffractive production, σdνp, as well as the total cross section, σtotνp, have been measured at an average υp center of mass energy of 180 GeV with the ZEUS detector at HERA. The resulting values are σelνp = 18 ± 7 μb, σdνp = 33 ± 8 μb, σndνp = 91 ± 11 μb, and σtotνp 143 ± 17 μb, where the errors include statistical and systematic errors added in quadrature.
Errors contain both statistics and systematics.
We report the first observation of diffractively produced W bosons. In a sample of W -> e nu events produced in p-barp collisions at sqrt{s}=1.8 TeV, we find an excess of events with a forward rapidity gap, which is attributed to diffraction. The probability that this excess is consistent with non-diffractive production is 1.1 10^{-4} (3.8 sigma). The relatively low fraction of W+Jet events observed within this excess implies that mainly quarks from the pomeron, which mediates diffraction, participate in W production. The diffractive to non-diffractive W production ratio is found to be R_W=(1.15 +/- 0.55)%.
No description provided.
The results of a study of the reaction π-p→π-π-π+p at2 147 GeV/c carried out at the Fermilab Proportional Wire 30″ Bubble Chamber Hybrid Spectrometer are reported. More than 92% of the cross-section ((670±41) μb) for this reaction is contained in those for proton and pion diffraction dissociation. The cross-sections for pion diffraction events with three-pion invariant mass in given regions are in agreement with values obtained by extrapolation of fits to data at lower incidentpion momenta. ρ0π- events make an important contribution in the A1 and A2 mass regions, and the data are consistent with contributions from f0π- in the A3 mass region. The cross-section for proton diffraction events is in agreement with a smooth extrapolation of the data at lower momentum.
No description provided.
None
No description provided.
No description provided.
No description provided.
This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with $\xl>0.97$, where $\xl$ is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of $t$, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section on $t$ is measured in the interval $0.073<|t|<0.4$~$\gevtwo$ and is found to be described by an exponential shape with the slope parameter $b=\tslopeerr$. The diffractive structure function $\ftwodfour$ is presented as a function of $\xpom \simeq 1-\xl$ and $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and averaged over the $t$ interval $0.073<|t|<\ftwodfourtmax$~$\gevtwo$ and the photon virtuality range $5
The measured distribution of T, the squared momentum transfer to the virtual pluton.
Slope of the T distribution.
The structure function F2(NAME=D4).