We search for new massive scalar particles X and Y through the resonant process X $\to$ YH $\to$$\mathrm{b\bar{b}b\bar{b}}$, where H is the standard model Higgs boson. Data from CERN LHC proton-proton collisions are used, collected at a centre-of-mass energy of 13 TeV in 2016-2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. The search is performed in mass ranges of 0.9-4 TeV for X and 60-600 GeV for Y, where both Y and H are reconstructed as Lorentz-boosted single large-area jets. The results are interpreted in the context of the next-to-minimal supersymmetric standard model and also in an extension of the standard model with two additional singlet scalar fields. The 95% confidence level upper limits for the production cross section vary between 0.1 and 150 fb depending on the X and Y masses, and represent a significant improvement over results from previous searches.
The $M_J^Y$ distribution for the number of observed events (black markers) compared with the estimated backgrounds (filled histograms) and their uncertainties (hatched areas) in the SR1. The distributions expected from the signal under three $M_X$ and $M_Y$ hypotheses and assuming a cross section of 1 fb are also shown. The lower panels show the ''Pulls'' defined as (observed events - expected events)/$\sqrt{\smash[b]{\sigma_{obs}^{2} - \sigma_{exp}^{2}}}$, where $\sigma_{obs}$ and $\sigma_{exp}$ are the statistical and total uncertainties in the observation and the background estimation, respectively. The minus sign accounts for the correlation between data and the data-driven estimation.
The $M_{JJ}$ distribution for the number of observed events (black markers) compared with the estimated backgrounds (filled histograms) and their uncertainties (hatched areas) in the SR1. The distributions expected from the signal under three $M_X$ and $M_Y$ hypotheses and assuming a cross section of 1 fb are also shown. The lower panels show the ''Pulls'' defined as (observed events - expected events)/$\sqrt{\smash[b]{\sigma_{obs}^{2} - \sigma_{exp}^{2}}}$, where $\sigma_{obs}$ and $\sigma_{exp}$ are the statistical and total uncertainties in the observation and the background estimation, respectively. The minus sign accounts for the correlation between data and the data-driven estimation.
The soft-drop mass distribution of the top quark candidate jets in the 2018 jets+lepton category, in the tight ParticleNet region, after the joint fit in all-jets and jets+lepton categories. Observed data (black markers) and the postfit estimate (filled histograms) are shown for the three jet categories. The lower panel shows the ''Pulls'' defined as (observed events - expected events)/$\sqrt{\smash[b]{\sigma_{obs}^{2} + \sigma_{exp}^{2}}}$, where $\sigma_{obs}$ and $\sigma_{exp}$ are the statistical and total uncertainties in the observation and the background estimation, respectively.