Date

Elastic scattering of 3.15 GeV/ c positive pions on protons at 180°

Savin, I.A. ; Vovenko, A.S. ; Gus'kov, B.N. ; et al.
Phys.Lett. 17 (1965) 68-69, 1965.
Inspire Record 1389652 DOI 10.17182/hepdata.30250

None

1 data table

No description provided.


$\pi^{-} + p$ elastic scattering in the neighbourhood of $N^{*}_1/2$ (2190)

Busza, W. ; Davis, D.G. ; Duff, B.G. ; et al.
Nuovo Cim.A 52 (1967) 331-341, 1967.
Inspire Record 1185326 DOI 10.17182/hepdata.37568

Elastic π−+p differential cross-section data are presented at the incident-pion momenta 1.72, 1.89, 2.07, 2.27 and 2.46 GeV/c. Resonant behaviour in the coefficients of a Legendre polynomial expansion indicates G- or H-wave resonance. Further analysis using an energy-dependent parametrization of G- and H-waves shows the results to be compatible with the 7−/2 assignment for the , but equally acceptable solutions are obtained with the inclusion of an additional 9+/2 resonance contribution.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Cross sections and Rosenbluth separations in 1H(e, e'K+)Lambda up to Q2=2.35 GeV2

The Jefferson Lab Hall A collaboration Coman, M. ; Markowitz, P. ; Aniol, K.A. ; et al.
Phys.Rev.C 81 (2010) 052201, 2010.
Inspire Record 837422 DOI 10.17182/hepdata.54197

The kaon electroproduction reaction 1H(e,e'K+)Lambda was studied as a function of the virtual-photon four-momentum, Q2, total energy, W, and momentum transfer, t, for different values of the virtual- photon polarization parameter. Data were taken at electron beam energies ranging from 3.40 to 5.75 GeV. The center of mass cross section was determined for 21 kinematics corresponding to Q2 of 1.90 and 2.35 GeV2 and the longitudinal, sigmaL, and transverse, sigmaT, cross sections were separated using the Rosenbluth technique at fixed W and t. The separated cross sections reveal a flat energy dependence at forward kaon angles not satisfactorily described by existing electroproduction models. Influence of the kaon pole on the cross sections was investigated by adopting an off-shell form factor in the Regge model which better describes the observed energy dependence of sigmaT and sigmaL.

11 data tables

Measured values of the separated cross section at Q**2 = 2.35 GeV**2 and W = 1.85 GeV.. Errors contain both statistics and systematics.

Measured values of the separated cross section at Q**2 = 1.90 GeV**2.. Errors contain both statistics and systematics.

Measured values of the separated cross section at Q**2 = 2.35 GeV**2.. Errors contain both statistics and systematics.

More…

Cross section measurements of charged pion photoproduction in hydrogen and deuterium from 1.1-GeV to 5.5-GeV.

The Jefferson Lab Hall A & Jefferson Lab E94-104 collaborations Zhu, L.Y. ; Arrington, J. ; Averett, T. ; et al.
Phys.Rev.C 71 (2005) 044603, 2005.
Inspire Record 659852 DOI 10.17182/hepdata.31680

The differential cross section for the gamma +n --> pi- + p and the gamma + p --> pi+ n processes were measured at Jefferson Lab. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The pi- and pi+ photoproduction data both exhibit a global scaling behavior at high energies and high transverse momenta, consistent with the constituent counting rule prediction and the existing pi+ data. The data suggest possible substructure of the scaling behavior, which might be oscillations around the scaling value. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV. The differential cross section ratios at high energies and high transverse momenta can be described by calculations based on one-hard-gluon-exchange diagrams.

14 data tables

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 5.614 GeV.

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 4.236 GeV.

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 3.400 GeV.

More…

Hard photon production and tests of QED at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 475 (2000) 198-205, 2000.
Inspire Record 513397 DOI 10.17182/hepdata.48965

The total and differential cross sections of the process e+e- -> n gamma with n >= 2 are measured using data collected by the L3 experiment at centre-of-mass energies of \sqrt{s}=183 and 189 GeV. The results are in agreement with the Standard Model expectations. Limits are set on deviations from QED, contact interaction cut-off parameters and masses of excited electrons.

2 data tables

Measured cross section.

Measured differential cross sections corrected for efficiency and additional photons as a function of cos(theta) where theta is the polar angle of the event defined as. cos(theta)=ABS((sin(theta1-theta2)/2)/(sin(theta1+theta2)/2)).


Zero-degree differential cross-sections and DNN values for the O-17, O-18 (,) F-17, F-18 reactions at E(p) = 118 MeV

van Heerden, I.J. ; Palarczyk, M. ; Wang, X. ; et al.
Phys.Rev.C 59 (1999) 1488-1496, 1999.
Inspire Record 516334 DOI 10.17182/hepdata.25605

We present zero-degree differential cross sections and transverse spin-transfer coefficients DNN(0°) for the 17,18O(p→,n→)17,18F reactions at Ep=118 MeV. For the transition to the 17F(g.s.) to which several multipoles contribute, the measured DNN(0°)=−0.13±0.05 is used to separate the Fermi and Gamow-Teller contributions at 0°. The empirical Gamow-Teller strengths and the Fermi strengths are employed to estimate the solar neutrino absorption cross section in 17O and 18O.

2 data tables

No description provided.

No description provided.


Longitudinal and transverse cross sections in the H-1(e,e' K+)Lambda reaction.

Niculescu, G. ; Mohring, R.M. ; Gueye, P. ; et al.
Phys.Rev.Lett. 81 (1998) 1805-1808, 1998.
Inspire Record 479881 DOI 10.17182/hepdata.19546

The 1H(e,e′K+)Λ reaction was studied as a function of the squared four-momentum transfer, Q2, and the virtual photon polarization, ɛ. For each of four Q2 settings, 0.52, 0.75, 1.00, and 2.00 (GeV/c)2, the longitudinal and transverse virtual photon cross sections were extracted in measurements at three virtual photon polarizations. The Q2 dependence of the σL/σT ratio differs significantly from current theoretical predictions. This, combined with the precision of the measurement, implies a need for revision of existing calculations.

1 data table

The systematic and statistical errors are added in quadrature. OMEGA is the solid angle of K+ in CMS.


Observation of multiple hard photon final states at s**(1/2) = 130-GeV to 140-GeV at LEP.

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Phys.Lett.B 384 (1996) 96006120 323-332, 1996.
Inspire Record 418664 DOI 10.17182/hepdata.47566

We have studied the process e<sup loc="post">+</sup>e<sup loc="post">−</sup> → nγ (n ≥ 2) at an average center-of-mass energy of 133 GeV using the L3 detector at LEP. For an integrated luminosity of 4.95 pb<sup loc="post">−1</sup> we find one γγγγ(γ) final state with only hard photons. The rates of both γγγ and γγ events are consistent with QED expectations. The cross section of the reaction e<sup loc="post">+</sup>e<sup loc="post">−</sup> → γγ(γ) in the polar range 16° &lt; θγ < 164° is measured to be 22.6 ± 2.2 pb. Decays into photons of narrow scalar resonances with masses between 90 and 130 GeV are not observed. The observation of the event with four energetic photons is consistent with QED although the kinematic configuration of the photons is atypical.

2 data tables

Cross section for process E+ E- --> GAMMA GAMMA (GAMMA) with two hard photons.Error is purely statistical, systematic effects are neglected.

No description provided.


Tests of QED at LEP energies using e+ e- --> gamma gamma (gamma) and e+ e- --> lepton+ lepton- gamma gamma

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Phys.Lett.B 353 (1995) 136-144, 1995.
Inspire Record 394354 DOI 10.17182/hepdata.47938

Total and differential cross sections for the process e + e − → γγ ( γ ), and the total cross section for the process e + e − → γγγ , are measured at energies around 91 GeV using the data collected with the L3 detector from 1991 to 1993. We set lower limits, at 95% CL, on a contact interaction energy scale parameter Λ > 602 GeV, on the mass of an excited electron m e ∗ >146 GeV and on the QED cut-off parameters Λ + > 149 GeV and Λ _ > 143 GeV. Upper limits are also set o branching fractions of Z decaying into γγ , π ° and ηγ of 5.2 × 10 −5 , 5.2 × 10 −5 and 7.6 × 10 −5 respectively. The reactions e + e − → ℓ + ℓ − nγ (ℓ = e , μ , τ ) are studied using the data collected from 1990 to 1994. The data are consistent with the QED expectations.

3 data tables

No description provided.

No description provided.

No description provided.


Measurements of the electric and magnetic form-factors of the proton from Q**2 = 1.75-GeV/c**2 to 8.83-GeV/c**2

Andivahis, L. ; Bosted, Peter E. ; Lung, A. ; et al.
Phys.Rev.D 50 (1994) 5491-5517, 1994.
Inspire Record 372566 DOI 10.17182/hepdata.22354

The proton elastic form factors GEp(Q2) and GMp(Q2) have been extracted for Q2=1.75 to 8.83 (GeV/c)2 via a Rosenbluth separation to ep elastic cross section measurements in the angular range 13°≤θ≤90°. The Q2 range covered more than doubles that of the existing data. For Q2<4 (GeV/c)2, where the data overlap with previous measurements, the total uncertainties have been reduced to < 14% in GEp and < 1.5% in GMp. Results for GEp(Q2) are consistent with the dipole fit GD(Q2)=(1+Q2/0.71)−2, while those for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.92. Deviations from form factor scaling are observed up to 20%. The ratio Q2F2/F1 is observed to approach a constant value for Q2>3 (GeV/c)2. Comparisons are made to vector meson dominance, dimensional scaling, QCD sum rule, diquark, and constituent quark models, none of which fully characterize all the new data.

8 data tables

Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).

Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).

Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).

More…