Low-$p_T$ $e^{+}e^{-}$ pair production in Au$+$Au collisions at $\sqrt{s_{NN}}$ = 200 GeV and U$+$U collisions at $\sqrt{s_{NN}}$ = 193 GeV at STAR

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 121 (2018) 132301, 2018.
Inspire Record 1676541 DOI 10.17182/hepdata.84821

We report first measurements of $e^{+}e^{-}$ pair production in the mass region 0.4 $

35 data tables match query

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

More…

Azimuthal anisotropy in Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adamczyk, Leszek ; Adams, Joseph ; Adkins, Kevin ; et al.
Phys.Rev.C 98 (2018) 014915, 2018.
Inspire Record 1641113 DOI 10.17182/hepdata.103057

The azimuthal anisotropic flow of identified and unidentified charged particles has been systematically studied in Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV for harmonics $n=$ 1-4 in the pseudorapidity range $|\eta|<1$. The directed flow in Cu+Au collisions is compared with the rapidity-odd and, for the first time, the rapidity-even components of charged particle directed flow in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200~GeV. The slope of the directed flow pseudorapidity dependence in Cu+Au collisions is found to be similar to that in Au+Au collisions, with the intercept shifted toward positive $\eta$ values, i.e., the Cu-going direction. The mean transverse momentum projected onto the spectator plane, $\langle p_x\rangle$, in Cu+Au collision also exhibits approximately linear dependence on $\eta$ with the intercept at about $\eta\approx-0.4$, closer to the rapidity of the Cu+Au system center-of-mass. The observed dependencies find natural explanation in a picture of the directed flow originating partly due the "tilted source" and partly due to the rapidity dependent asymmetry in the initial density distribution. Charge-dependence of the $\langle p_x\rangle$ was also observed in Cu+Au collisions, indicating an effect of the initial electric field created by charge difference of the spectator protons in two colliding nuclei. The rapidity-even component of directed flow in Au+Au collisions is close to that in Pb+Pb collisions at $\sqrt{s_{_{NN}}}$ = 2.76 TeV, indicating a similar magnitude of dipole-like fluctuations in the initial-state density distribution. Higher harmonic flow in Cu+Au collisions exhibits similar trends to those observed in Au+Au and Pb+Pb collisions and is qualitatively reproduced by a viscous hydrodynamic model and a multi-phase transport model. For all harmonics with $n\ge2$ we observe an approximate scaling of $v_n$ with the number of constituent quarks.

0 data tables match query

Energy Dependence of Intermittency for Charged Hadrons in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 845 (2023) 138165, 2023.
Inspire Record 2626682 DOI 10.17182/hepdata.137849

Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au$+$Au collisions and a decrease in the extracted scaling exponent ($\nu$) from peripheral to central collisions. The $\nu$ is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the $\nu$ in the 0-5% most central Au$+$Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV. The physics implications on the QCD phase structure are discussed.

0 data tables match query

Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Sci.Adv. 9 (2023) eabq3903, 2023.
Inspire Record 2062296 DOI 10.17182/hepdata.132921

A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultra-relativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus forming a short-lived vector meson (e.g. ${\rho^0}$). In this experiment, the polarization was utilized in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of ${\rho^0\rightarrow\pi^+\pi^-}$ decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ${\rho^0}$ travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions, and found to be $6.53\pm 0.06$ fm ($^{197} {\rm Au }$) and $7.29\pm 0.08$ fm ($^{238} {\rm U}$), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of non-identical particles.

0 data tables match query

Measurement of hyper triton lifetime in Au + Au collisions at the Relativistic Heavy-Ion Collider

The STAR collaboration Adamczyk, L. ; Adams, Joseph ; Adkins, Kevin ; et al.
Phys.Rev.C 97 (2018) 054909, 2018.
Inspire Record 1628155 DOI 10.17182/hepdata.102407

A precise measurement of the hypertriton lifetime is presented. In this letter, the mesonic decay modes $\mathrm{{^3_\Lambda}H \rightarrow ^3He + \pi^-}$ and $\mathrm{{^3_\Lambda}H \rightarrow d + p + \pi^-}$ are used to reconstruct the hypertriton from Au+Au collision data collected by the STAR collaboration at RHIC. A minimum $\chi^2$ estimation is used to determine the lifetime of $\tau = 142^{+24}_{-21}\,{\rm (stat.)} {\pm} 31\,{\rm (syst.)}$ ps. This lifetime is about 50\% shorter than the lifetime $\tau = 263\pm2$ ps of a free $\Lambda$, indicating strong hyperon-nucleon interaction in the hypernucleus system. The branching ratios of the mesonic decay channels are also determined to satisfy B.R.$_{(^3{\rm He}+\pi^-)}/$(B.R.$_{(^3{\rm He}+\pi^-)}+$B.R.$_{(d+p+\pi^-)})$ = $0.32\rm{\pm}0.05\,{\rm (stat.)}\pm 0.08\,{\rm (syst.)}$. Our ratio result favors the assignment $J(\mathrm{^{3}_{\Lambda}H})$ = $\frac{1}{2}$ over $J(\mathrm{^{3}_{\Lambda}H})$ = $\frac{3}{2}$. These measurements will help to constrain models of hyperon-baryon interactions.

0 data tables match query

Beam energy dependence of the linear and mode-coupled flow harmonics in Au+Au collisions

The STAR collaboration Aboona, Bassam ; Adam, Jaroslav ; Adams, Joseph ; et al.
Phys.Lett.B 839 (2023) 137755, 2023.
Inspire Record 2634985 DOI 10.17182/hepdata.135974

The linear and mode-coupled contributions to higher-order anisotropic flow are presented for Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 27, 39, 54.4, and 200 GeV and compared to similar measurements for Pb+Pb collisions at the Large Hadron Collider (LHC). The coefficients and the flow harmonics' correlations, which characterize the linear and mode-coupled response to the lower-order anisotropies, indicate a beam energy dependence consistent with an influence from the specific shear viscosity ($\eta/s$). In contrast, the dimensionless coefficients, mode-coupled response coefficients, and normalized symmetric cumulants are approximately beam-energy independent, consistent with a significant role from initial-state effects. These measurements could provide unique supplemental constraints to (i) distinguish between different initial-state models and (ii) delineate the temperature ($T$) and baryon chemical potential ($\mu_{B}$) dependence of the specific shear viscosity $\frac{\eta}{s} (T, \mu_B)$.

0 data tables match query

Version 3
Centrality and transverse momentum dependence of $D^0$-meson production at mid-rapidity in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{200\,GeV}}$

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 99 (2019) 034908, 2019.
Inspire Record 1711377 DOI 10.17182/hepdata.95750

We report a new measurement of $D^0$-meson production at mid-rapidity ($|y|$\,$<$\,1) in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{200\,GeV}}$ utilizing the Heavy Flavor Tracker, a high resolution silicon detector at the STAR experiment. Invariant yields of $D^0$-mesons with transverse momentum $p_{T}$ $\lesssim 9$\,GeV/$c$ are reported in various centrality bins (0--10\%, 10--20\%, 20--40\%, 40--60\% and 60--80\%). Blast-Wave thermal models are used to fit the $D^0$-meson $p_{T}$ spectra to study $D^0$ hadron kinetic freeze-out properties. The average radial flow velocity extracted from the fit is considerably smaller than that of light hadrons ($\pi,K$ and $p$), but comparable to that of hadrons containing multiple strange quarks ($\phi,\Xi^-$), indicating that $D^0$ mesons kinetically decouple from the system earlier than light hadrons. The calculated $D^0$ nuclear modification factors re-affirm that charm quarks suffer large amount of energy loss in the medium, similar to those of light quarks for $p_{T}$\,$>$\,4\,GeV/$c$ in central 0--10\% Au+Au collisions. At low $p_{T}$, the nuclear modification factors show a characteristic structure qualitatively consistent with the expectation from model predictions that charm quarks gain sizable collective motion during the medium evolution. The improved measurements are expected to offer new constraints to model calculations and help gain further insights into the hot and dense medium created in these collisions.

4 data tables match query

$D^0$ (in terms of (D0 +D0)/2)) invariant yield at mid-rapidity ($|y| < 1$) vs transverse momentum for different centrality classes. Error bars indicate statistical uncertainties and brackets depict systematic uncertainties. Global systematic uncertainties in B.R. are not plotted. Solid and dashed lines depict Levy function fits.

$D^0$ (in terms of (D0 +D0)/2)) spectra in pp collisions. Note, the $\sigma_{NSD}$ = 30 $m$b for p+p was used in the calculations.

Integrated $D^0$ cross section per nucleon-nucleon collision at mid-rapidity for $p_T >0$ (a) and $p_T >4$ GeV/c (b) as a function of centrality $N_{part}$. The statistical and systematic uncertainties are shown as error bars and brackets on the data points. The green boxes on the data points depict the overall normalization uncertainties in p+p and Au+Au data respectively.

More…

Results on Total and Elastic Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 808 (2020) 135663, 2020.
Inspire Record 1791591 DOI 10.17182/hepdata.94263

We report results on the total and elastic cross sections in proton-proton collisions at $\sqrt{s}=200$ GeV obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section was measured in the squared four-momentum transfer range $0.045 \leq -t \leq 0.135$ GeV$^2$. The value of the exponential slope parameter $B$ of the elastic differential cross section $d\sigma/dt \sim e^{-Bt}$ in the measured $-t$ range was found to be $B = 14.32 \pm 0.09 (stat.)^{\scriptstyle +0.13}_{\scriptstyle -0.28} (syst.)$ GeV$^{-2}$. The total cross section $\sigma_{tot}$, obtained from extrapolation of the $d\sigma/dt$ to the optical point at $-t = 0$, is $\sigma_{tot} = 54.67 \pm 0.21 (stat.) ^{\scriptstyle +1.28}_{\scriptstyle -1.38} (syst.)$ mb. We also present the values of the elastic cross section $\sigma_{el} = 10.85 \pm 0.03 (stat.) ^{\scriptstyle +0.49}_{\scriptstyle -0.41}(syst.)$ mb, the elastic cross section integrated within the STAR $t$-range $\sigma^{det}_{el} = 4.05 \pm 0.01 (stat.) ^{\scriptstyle+0.18}_{\scriptstyle -0.17}(syst.)$ mb, and the inelastic cross section $\sigma_{inel} = 43.82 \pm 0.21 (stat.) ^{\scriptstyle +1.37}_{\scriptstyle -1.44} (syst.)$ mb. The results are compared with the world data.

0 data tables match query

Beam energy dependence of (anti-)deuteron production in Au+Au collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 99 (2019) 064905, 2019.
Inspire Record 1727273 DOI 10.17182/hepdata.105510

We report the energy dependence of mid-rapidity (anti-)deuteron production in Au+Au collisions at $\sqrt{s_\text{NN}} =\ $7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV, measured by the STAR experiment at RHIC. The yield of deuterons is found to be well described by the thermal model. The collision energy, centrality, and transverse momentum dependence of the coalescence parameter $B_2$ are discussed. We find that the values of $B_2$ for anti-deuterons are systematically lower than those for deuterons, indicating that the correlation volume of anti-baryons is larger than that of baryons at $\sqrt{s_\text{NN}}$ from 19.6 to 39 GeV. In addition, values of $B_2$ are found to vary with collision energy and show a broad minimum around $\sqrt{s_\text{NN}}=\ $20 to 40 GeV, which might imply a change of the equation of state of the medium in these collisions.

0 data tables match query

Version 2
Beam-Energy Dependence of Directed Flow of $\Lambda$, $\bar{\Lambda}$, $K^\pm$, $K^0_s$ and $\phi$ in Au+Au Collisions

The STAR collaboration Adamczyk, Leszek ; Adams, Joseph ; Adkins, Kevin ; et al.
Phys.Rev.Lett. 120 (2018) 062301, 2018.
Inspire Record 1618747 DOI 10.17182/hepdata.101750

Rapidity-odd directed flow measurements at midrapidity are presented for $\Lambda$, $\bar{\Lambda}$, $K^\pm$, $K^0_s$ and $\phi$ at $\sqrt{s_{NN}} =$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV in Au+Au collisions recorded by the STAR detector at the Relativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. Results show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum-rule can be a valuable new tool for probing the collision dynamics.

0 data tables match query