Showing 10 of 943 results
A search for a charged Higgs boson H$^\pm$ decaying into a heavy neutral Higgs boson H and a W boson is presented. The analysis targets the H decay into a pair of tau leptons with at least one of them decaying hadronically and with an additional electron or muon present in the event. The search is based on proton-proton collision data recorded by the CMS experiment during 2016-2018 at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The data are consistent with standard model background expectations. Upper limits at 95% confidence level are set on the product of the cross section and branching fraction for an H$^\pm$ in the mass range of 300-700 GeV, assuming an H with a mass of 200 GeV. The observed limits range from 0.085 pb for an H$^\pm$ mass of 300 GeV to 0.019 pb for a mass of 700 GeV. These are the first limits on H$^\pm$ production in the H$^\pm$ $\to$ HW$^\pm$ decay channel at the LHC.
Expected and observed upper limits at 95% CL on the product of cross section and branching fraction as a function of mH+ and assuming mH = 200 GeV for the combination of all final states considered.
An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb$^{-1}$. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred $\mu$m to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons Z$_\mathrm{D}$, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with $m_\mathrm{Z_D}$ greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for $c\tau$(Z$_\mathrm{D}$) (varying with $m_\mathrm{Z_D}$) between 0.03 and ${\approx}$ 0.5 mm, and above ${\approx}$ 0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2018 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 28$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2018 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 28$ GeV.
Fractions of signal events with zero (green), one (blue), and two (red) STA muons matched to TMS muons by the STA-to-TMS muon association procedure, as a function of true $L_{xy}$, in all simulated $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal samples combined. The fractions are computed relative to the number of signal events passing the trigger and containing two STA muons with more than 12 muon detector hits and $p_T > 10$ GeV matched to generated muons from $X \rightarrow \mu \mu$ decays.
Fractions of signal events with zero (green), one (blue), and two (red) STA muons matched to TMS muons by the STA-to-TMS muon association procedure, as a function of true $L_{xy}$, in all simulated $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal samples combined. The fractions are computed relative to the number of signal events passing the trigger and containing two STA muons with more than 12 muon detector hits and $p_T > 10$ GeV matched to generated muons from $X \rightarrow \mu \mu$ decays.
Comparison of the number of events observed in 2016 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 10\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 10\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 30\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 30\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 40\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 40\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 60\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 60\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $c\tau(Z_D)$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $c\tau(Z_D)$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $\epsilon$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $\epsilon$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Background estimation and observed number of events in the STA-STA dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown. The mass interval is followed by the estimated and observed counts for the given year. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the STA-STA dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown, followed by the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ for the given year. The quoted uncertainties are statistical only.
Background estimation and observed number of events in the TMS-TMS dimuon category in 2016 data. The mass interval is followed by the estimated and observed counts within each $min(d_0 / \sigma_{d_0})$ bin in this mass interval. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the TMS-TMS dimuon category in 2016 data. For each mass interval, the table shows the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ in each of the three $\text{min}(d_0 / \sigma_{d_0})$ bins. The quoted uncertainties are statistical only
Background estimation and observed number of events in the TMS-TMS dimuon category in 2018 data. The mass interval is followed by the estimated and observed counts within each $min(d_0 / \sigma_{d_0})$ bin in this mass interval. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the TMS-TMS dimuon category in 2016 data. For each mass interval, the table shows the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ in each of the three $\text{min}(d_0 / \sigma_{d_0})$ bins. The quoted uncertainties are statistical only
Correspondence between the mass intervals in the TMS-TMS category and the parameters of the simulated signal samples.
Correspondence between the probed LLP masses and the chosen mass intervals in the TMS-TMS category.
Background estimation and observed number of events in the STA-TMS dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown. The mass interval is followed by the estimated and observed counts for the given year. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the STA-TMS dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown, followed by the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ for the given year. The quoted uncertainties are statistical only.
Number of events passing consecutive sets of selection criteria for 2018 collision data and the signal process $\Phi(125) \rightarrow XX(20\ GeV, c\tau = 13\ cm) \rightarrow \mu\mu$. Each row introduces a new criterion that is applied in addition to the selection of the previous row. In addition to the total number of events, N(events), the event yields of the individual dimuon vertex categories, STA-STA, TMS-TMS, and STA-TMS, are shown in separate columns for each data set. In these columns, events containing selected dimuons of different categories are independently counted for each category.
Number of events passing consecutive sets of selection criteria, in 2018 data and in a sample of simulated $\Phi \rightarrow XX \rightarrow \mu\mu$ signal events with $m(H) = 125\ GeV$, $m(X) = 20\ GeV$, and $c\tau = 13\ cm$. Each row introduces a new criterion that is applied in addition to the selection of the previous row. In addition to the total number of events $N(\text{total})$, the event yields in the individual dimuon categories, STA-STA, TMS-TMS, and STA-TMS, are shown in separate columns for each data set. In these columns, events containing selected dimuons of different categories are counted independently for each category.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 350\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 350\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 10\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 10\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 30\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 30\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 40\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 40\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 60\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 60\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper. Efficiencies for dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the STA-TMS and TMS-TMS dimuon categories are equal to zero.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper. Efficiencies for dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the STA-TMS and TMS-TMS dimuon categories are equal to zero.
A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton+jets channel of top quark pair production ($\mathrm{t\bar{t}}$) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400 GeV. The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138 fb$^{-1}$. The differential $\mathrm{t\bar{t}}$ production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of 173.06 $\pm$ 0.84 GeV.
The particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Correlations between bins in the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Correlations between bins in the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
Relative experimental uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Relative model uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Relative experimental uncertainties of the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Relative model uncertainties of the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
We present the first direct search for exotic Higgs boson decays H $\to$$\mathcal{A}\mathcal{A}$, $\mathcal{A}$$\to$$\gamma\gamma$ in events with two photonlike objects. The hypothetical particle $\mathcal{A}$ is a low-mass spin-0 particle decaying promptly to a merged diphoton reconstructed as a single photonlike object. We analyze the data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 136 fb$^{-1}$. No excess above the estimated background is found. We set upper limits on the branching fraction $\mathcal{B}$(H $\to$$\mathcal{A}\mathcal{A}$$\to$ 4$\gamma$) of (0.9-3.3) $\times$ 10$^{-3}$ at 95% confidence level for masses of $\mathcal{A}$ in the range 0.1-1.2 GeV.
Observed and median expected 95% confidence level (CL) upper limits on $\mathcal{B}(\mathrm{H} \rightarrow \mathcal{A}\mathcal{A} \rightarrow 4\gamma)$ as a function of $m_{\mathcal{A}}$ for prompt $\mathcal{A}$ decays. The 68% and 95% confidence intervals (CIs) around the median expected upper limit are also provided.
A search for pairs of dijet resonances with the same mass is conducted in final states with at least four jets. Results are presented separately for the case where the four jet production proceeds via an intermediate resonant state and for nonresonant production. The search uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected by the CMS detector in proton-proton collisions at $\sqrt{s}$ = 13 TeV. Model-independent limits, at 95% confidence level, are reported on the production cross section of four-jet and dijet resonances. These first LHC limits on resonant pair production of dijet resonances via high mass intermediate states are applied to a signal model of diquarks that decay into pairs of vector-like quarks, excluding diquark masses below 7.6 TeV for a particular model scenario. There are two events in the tails of the distributions, each with a four-jet mass of 8 TeV and an average dijet mass of 2 TeV, resulting in local and global significances of 3.9 and 1.6 standard deviations, respectively, if interpreted as a signal. The nonresonant search excludes pair production of top squarks with masses between 0.50 TeV to 0.77 TeV, with the exception of a small interval between 0.52 and 0.58 TeV, for supersymmetric $R$-parity-violating decays to quark pairs, significantly extending previous limits. Here, the most significant excess above the predicted background occurs at an average dijet mass of 0.95 TeV, for which the local and global significances are 3.6 and 2.5 standard deviations, respectively.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.11$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.13$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.15$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.17$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.19$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.21$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.23$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.25$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.27$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.29$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.31$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.33$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances decaying to a quark-gluon pair, with $M(X)/M(Y) = 0.42$. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to predictions for a scalar diquark with couplings to pairs of up quarks, $y_{uu}$ = 0.4, and to pairs of vector-like quarks, $y_{χ}$ = 0.6.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for the non-resonant production of top squark pairs in the RPV SUSY decay scenario. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to the top squark model cross section.
Observed differential four-jet mass spectrum for 0.22 < $\\a$ < 0.24. The cross-section is calculated by dividing the event yield by the bin width and luminosity.
Observed differential four-jet mass spectrum for 0.24 < $\\a$ < 0.26. The cross-section is calculated by dividing the event yield by the bin width and luminosity.
Observed differential four-jet mass spectrum for 0.26 < $\\a$ < 0.28. The cross-section is calculated by dividing the event yield by the bin width and luminosity.
Observed differential four-jet mass spectrum for all $\\a$ bins together. The cross-section is calculated by dividing the event yield by the bin width and luminosity.
Observed differential average dijet mass spectrum within three $\\a$ bins of the non-resonant search. The cross-section is calculated by dividing the event yield by the bin width and luminosity.
A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016-2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The search is sensitive to resonances with masses between 1.3 and 6 TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z' and W' resonances with masses below 4.8 TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7 TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb.
Observed and expected 95% CL upper limits on the product of the production cross section ($\sigma$) and the branching fraction, obtained after combining all categories with 138 $\mathrm{fb}^{−1}$ of data at $\sqrt{s}$ = 13 TeV for R to VV signal.
Observed and expected 95% CL upper limits on the product of the production cross section ($\sigma$) and the branching fraction, obtained after combining all categories with 138 $\mathrm{fb}^{−1}$ of data at $\sqrt{s}$ = 13 TeV for $\mathrm{G}_\mathrm{bulk}$ to $VV$ signal.
Observed and expected 95% CL upper limits on the product of the production cross section ($\sigma$) and the branching fraction, obtained after combining all categories with 138 $\mathrm{fb}^{−1}$ of data at $\sqrt{s}$ = 13 TeV for $\mathrm{V'}$ to $VV$ + $VH$ signal in HVT model B.
Observed and expected 95% CL upper limits on the product of the production cross section ($\sigma$) and the branching fraction, obtained after combining all categories with 138 $\mathrm{fb}^{−1}$ of data at $\sqrt{s}$ = 13 TeV for $\mathrm{V'}$ to $VV$ + $VH$ signal in HVT model C.
Total signal efficiency including all event categories as a function of the resonance mass $M_X$ for all DY/ggF signal models under consideration. The estimates from MC simulation (markers) are interpolated with a functional form (lines).
Total signal efficiency including all event categories as a function of the resonance mass $M_X$ for all VBF signal models under consideration. The estimates from MC simulation (markers) are interpolated with a functional form (lines).
A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016-2018, with an integrated luminosity of 138 fb$^{-1}$. Events are separated into single-lepton, same-sign charge dilepton, and multilepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for $\mathrm{T\overline{T}}$ production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for $\mathrm{B\overline{B}}$ production with B quark decays to tW.
Distribution of ST in the training region for the $T\overline{T}$ MLP. The observed data are shown along with the predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario and the background. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x300 and x600, respectively, for visibility.
Distribution of the leading jet’s DEEPAK8 light quark or gluon score in the training region for the $T\overline{T}$ MLP. The observed data are shown along with the predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario and the background. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x300 and x600, respectively, for visibility.
Distribution of the MLP T quark score in the SR for the $T\overline{T}$ search. The observed data, predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario, and the background are all shown. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x10 and x20, respectively, for visibility.
Distribution of the MLP W+jets score in the CRs for the $T\overline{T}$ search. The observed data, predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario, and the background are all shown. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown.
Distribution of DeepAK8 jet tags in the DeepAK8 CR of the $T\overline{T}$ search. The observed data are shown using black markers, $T\overline{T}$ signals using solid lines, and background using filled histograms. Statistical and systematic uncertainties in the background prediction before performing the fit to data are shown by the hatched region.
Distribution of HT in the W+jets CR of the $T\overline{T}$ search. The observed data are shown using black markers, $T\overline{T}$ signals using solid lines, and background using filled histograms. Statistical and systematic uncertainties in the background prediction before performing the fit to data are shown by the hatched region.
Distribution of HT in the $T\overline{T}$ CR of the $T\overline{T}$ search. The observed data are shown using black markers, $T\overline{T}$ signals using solid lines, and background using filled histograms. Statistical and systematic uncertainties in the background prediction before performing the fit to data are shown by the hatched region.
Numbers of predicted and observed CR events in 2016--2018 data for the $T\overline{T}$ signal hypotheses in the single-lepton channel, after a background-only fit to data. Predicted numbers of signal events before the fit to data are included for comparison, using the singlet branching fraction scenario. Uncertainties include statistical and systematic components, and lepton flavor categories are combined with their uncertainties added in quadrature. Values in the DeepAK8 CR represent the number of large-radius jets rather than number of events.
Numbers of predicted and observed CR events in 2016--2018 data for the $B\overline{B}$ signal hypotheses in the single-lepton channel, after a background-only fit to data. Predicted numbers of signal events before the fit to data are included for comparison, using the singlet branching fraction scenario. Uncertainties include statistical and systematic components, and lepton flavor categories are combined with their uncertainties added in quadrature. Values in the DeepAK8 CR represent the number of large-radius jets rather than number of events.
Numbers of predicted and observed CR events in 2017--2018 data in the same-sign dilepton channel, after a background-only fit to data. Predicted numbers of signal events before the fit to data are included for comparison, using the singlet branching fraction scenario. Uncertainties include statistical and systematic components. Predictions for 2017 and 2018 are combined with their uncertainties added in quadrature.
Distribution of lepton $p_T$ in 2017 in the multilepton channel nonprompt lepton control region for all flavor categories, evaluated with the best-fit nonprompt rates. The uncertainty shown is the quadratic sum of statistical and systematics uncertainties.
Distribution of lepton $p_T$ in 2018 in the multilepton channel nonprompt lepton control region for all flavor categories, evaluated with the best-fit nonprompt rates. The uncertainty shown is the quadratic sum of statistical and systematics uncertainties.
Numbers of predicted and observed CR events in 2017--2018 data in the multilepton channel, after a background-only fit to data. Predicted numbers of signal events before the fit to data are included for comparison, using the singlet branching fraction scenario. Uncertainties include statistical and systematic components. Predictions for 2017 and 2018 are combined with their uncertainties added in quadrature.
Numbers of predicted and observed $T\overline{T}$ SR events in 2016--2018 data in the single-lepton channel, after a background-only fit to data. Predicted numbers of signal events before the fit to data are included for comparison, using the singlet branching fraction scenario. Uncertainties include statistical and systematic components, and lepton flavor categories are combined with their uncertainties added in quadrature.
Distribution of the VLQ score in single-lepton category 1. Observed data is shown using black markers, $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region. Electron and muon categories have been combined with their uncertainties added in quadrature.
Distribution of the VLQ score in single-lepton category 2. Observed data is shown using black markers, $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region. Electron and muon categories have been combined with their uncertainties added in quadrature.
Distribution of the VLQ score in single-lepton category 3. Observed data is shown using black markers, $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region. Electron and muon categories have been combined with their uncertainties added in quadrature.
Distribution of the VLQ score in single-lepton category 4. Observed data is shown using black markers, $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region. Electron and muon categories have been combined with their uncertainties added in quadrature.
Distribution of the VLQ score in single-lepton category 5. Observed data is shown using black markers, $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region. Electron and muon categories have been combined with their uncertainties added in quadrature.
Distribution of the VLQ score in single-lepton category 6. Observed data is shown using black markers, $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region. Electron and muon categories have been combined with their uncertainties added in quadrature.
Distribution of the VLQ score in single-lepton category 7. Observed data is shown using black markers, $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region. Electron and muon categories have been combined with their uncertainties added in quadrature.
Distribution of the VLQ score in single-lepton category 8. Observed data is shown using black markers, $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region. Electron and muon categories have been combined with their uncertainties added in quadrature.
Distribution of the VLQ score in single-lepton category 9. Observed data is shown using black markers, $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region. Electron and muon categories have been combined with their uncertainties added in quadrature.
Distribution of the VLQ score in single-lepton category 10. Observed data is shown using black markers, $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region. Electron and muon categories have been combined with their uncertainties added in quadrature.
Distribution of the VLQ score in single-lepton category 11. Observed data is shown using black markers, $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region. Electron and muon categories have been combined with their uncertainties added in quadrature.
Distribution of the VLQ score in single-lepton category 12. Observed data is shown using black markers, $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region. Electron and muon categories have been combined with their uncertainties added in quadrature.
Distribution of $H_T^{\mathrm{lep}}$ in the same-sign dilepton signal region for $ee$ category. Data from 2017 and 2018 is shown using black markers, $T\overline{T}$ signals with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region.
Distribution of $H_T^{\mathrm{lep}}$ in the same-sign dilepton signal region for $e\mu$ category. Data from 2017 and 2018 is shown using black markers, $T\overline{T}$ signals with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region.
Distribution of $H_T^{\mathrm{lep}}$ in the same-sign dilepton signal region for $\mu\mu$ category. Data from 2017 and 2018 is shown using black markers, $T\overline{T}$ signals with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region.
Distribution of $S_T$ in the multilepton signal region for $eee$ category. Data from 2017 and 2018 is shown using black markers, $T\overline{T}$ signals with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region.
Distribution of $S_T$ in the multilepton signal region for $ee\mu$ category. Data from 2017 and 2018 is shown using black markers, $T\overline{T}$ signals with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region.
Distribution of $S_T$ in the multilepton signal region for $e\mu\mu$ category. Data from 2017 and 2018 is shown using black markers, $T\overline{T}$ signals with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region.
Distribution of $S_T$ in the multilepton signal region for $\mu\mu\mu$ category. Data from 2017 and 2018 is shown using black markers, $T\overline{T}$ signals with mass of 1.2 (1.5) TeV in the singlet scenario using solid (dashed) lines, and post-fit background using filled histograms. Statistical and systematic uncertainties in the background prediction after performing the fit to data are shown by the hatched region.
Numbers of predicted and observed $B\overline{B}$ SR events in 2016--2018 data in the single-lepton channel, after a background-only fit to data. Predicted numbers of signal events before the fit to data are included for comparison, using the singlet branching fraction scenario. Uncertainties include statistical and systematic components, and lepton flavor categories are combined with their uncertainties added in quadrature.
Numbers of predicted and observed SR events in 2017--2018 data in the same-sign dilepton channel, after a background-only fit to data. Predicted numbers of signal events before the fit to data are included for comparison, using the singlet branching fraction scenario. Uncertainties include statistical and systematic components. Predictions for 2017 and 2018 are combined with their uncertainties added in quadrature.
Numbers of predicted and observed SR events in 2017--2018 data in the multilepton channel, after a background-only fit to data. Predicted numbers of signal events before the fit to data are included for comparison, using the singlet branching fraction scenario. Uncertainties include statistical and systematic components. Predictions for 2017 and 2018 are combined with their uncertainties added in quadrature.
Expected and observed lower limits on the VLT quark masses.
Expected and observed lower limits on the VLB quark masses.
Expected 95% CL upper limits on $T\overline{T}$ production cross sections for the singlet combination.
Expected 95% CL upper limits on $T\overline{T}$ production cross sections for the doublet combination.
Expected 95% CL upper limits on $B\overline{B}$ production cross sections for the singlet combination.
Expected 95% CL upper limits on $B\overline{B}$ production cross sections for the doublet combination.
The 95% CL expected lower mass limits on pair-produced T quark masses as functions of their branching ratios to W and H bosons.
The 95% CL observed lower mass limits on pair-produced T quark masses as functions of their branching ratios to W and H bosons.
The 95% CL expected lower mass limits on pair-produced B quark masses as functions of their branching ratios to W and H bosons.
The 95% CL observed lower mass limits on pair-produced B quark masses as functions of their branching ratios to W and H bosons.
The first search is presented for vector-like leptons (VLLs) in the context of the "4321 model", an ultraviolet-complete model with the potential to explain existing B physics measurements that are in tension with standard model predictions. The analyzed data, corresponding to an integrated luminosity of 96.5 fb$^{-1}$, were recorded in 2017 and 2018 with the CMS detector at the LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV. Final states with ${\geq}$ 3 b-tagged jets and two third-generation leptons ($\tau\tau$, $\tau\nu_\tau$, or $\nu_\tau\nu_\tau$) are considered. Upper limits are derived on the VLL production cross section in the VLL mass range 500-1050 GeV. The maximum likelihood fit prefers the presence of signal at the level of 2.8 standard deviations, for a representative VLL mass point of 600 GeV. As a consequence, the observed upper limits are approximately double the expected limits.
Expected and observed $95\%$ CL upper limits on the product of the VLL pair production cross section and the branching fraction to third generation quarks and leptons, combining the 2017 and 2018 data and all $\tau_\textrm{h}$ multiplicity channels. The theoretical prediction in the 4321 model for electroweak production of VLLs is also shown.
A search is presented for the Higgs boson decay to a pair of electrons (e$^+$e$^-$) in proton-proton collisions at $\sqrt{s}$ = 13 TeV. The data set was collected with the CMS experiment at the LHC between 2016 and 2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis uses event categories targeting Higgs boson production via gluon fusion and vector boson fusion. The observed upper limit on the Higgs boson branching fraction to an electron pair is 3.0 $\times$ 10$^{-4}$ (3.0 $\times$ 10$^{-4}$ expected) at the 95% confidence level, which is the most stringent limit on this branching fraction to date.
Number of data events and the number of background events in the best-fit signal-plus-background model for the ggH Tag 0 category, in bins of $m_{ee}$. The number of signal events in the SM and at the observed limit are also provided in the same bins.
Number of data events and the number of background events in the best-fit signal-plus-background model for the ggH Tag 1 category, in bins of $m_{ee}$. The number of signal events in the SM and at the observed limit are also provided in the same bins.
Number of data events and the number of background events in the best-fit signal-plus-background model for the ggH Tag 2 category, in bins of $m_{ee}$. The number of signal events in the SM and at the observed limit are also provided in the same bins.
Number of data events and the number of background events in the best-fit signal-plus-background model for the ggH Tag 3 category, in bins of $m_{ee}$. The number of signal events in the SM and at the observed limit are also provided in the same bins.
Number of data events and the number of background events in the best-fit signal-plus-background model for the VBF Tag 0 category, in bins of $m_{ee}$. The number of signal events in the SM and at the observed limit are also provided in the same bins.
Number of data events and the number of background events in the best-fit signal-plus-background model for the VBF Tag 1 category, in bins of $m_{ee}$. The number of signal events in the SM and at the observed limit are also provided in the same bins.
Expected and observed limits at the 95%% C.L. on the branching fraction to an electron pair ($e^{+}e^{-}$) for a Higgs boson mass between 120 and 130 GeV.
Expected and observed limits at the 95%% C.L. on the branching fraction to an electron pair ($e^{+}e^{-}$) for each analysis category, and all categories combined. The results here are computed for $m_{H}=125.38$ GeV.
Three searches are presented for signatures of physics beyond the standard model (SM) in $\tau\tau$ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into $\tau$ leptons and the cross sections for the production of a new boson $\phi$, in addition to the H(125) boson, via gluon fusion (gg$\phi$) or in association with b quarks, ranging from $\mathcal{O}$(10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for gg$\phi$ production with local $p$-values equivalent to about three standard deviations at $m_\phi$ = 0.1 and 1.2 TeV. In a search for $t$-channel exchange of a vector leptoquark U$_1$, 95% CL upper limits are set on the dimensionless U$_1$ leptoquark coupling to quarks and $\tau$ leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the $M_\mathrm{h}^{125}$ and $M_\mathrm{h, EFT}^{125}$ minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled. The peak in the expected $gg\phi$ limit is tribute to a loss of sensitivity around $90\text{ GeV}$ due to the background from $Z/\gamma^\ast\rightarrow\tau\tau$ events. Numerical values provided in this table correspond to Figure 10a of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $bb\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $gg\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 10b of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 37 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $bb\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $gg\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 38 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled and only top quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 39 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled and only bottom quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 40 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 31 of the auxilliary material of the publication.
Local significance for a $bb\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $gg\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 32 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 33 of the auxilliary material of the publication.
Local significance for a $bb\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $gg\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 34 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been profiled and only top quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 35 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been profiled and only bottom quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 36 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $95\text{ GeV}$, produced via gluon-fusion ($gg\phi$), via vector boson fusion ($qq\phi$) or in association with b quarks ($bb\phi$). In this case, $bb\phi$ production rate is profiled, whereas the scan is performed in the $gg\phi$ and $qq\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 64 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $60\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 65 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $60\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 66 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $80\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 67 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $80\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 68 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $95\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 69 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $95\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 70 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $100\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 71 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $100\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 72 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $120\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 73 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $120\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 74 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $125\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 75 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $125\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 76 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $130\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 77 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $130\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 78 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $140\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 79 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $140\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 80 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $160\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 81 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $160\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 82 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $180\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 83 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $180\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 84 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $200\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 85 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $200\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 86 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on $g_U$ in the VLQ BM 1 scenario in a mass range of $1\leq m_U\leq 5\text{ TeV}$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. Numerical values provided in this table correspond to Figure 12a of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on $g_U$ in the VLQ BM 2 scenario in a mass range of $1\leq m_U\leq 5\text{ TeV}$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. Numerical values provided in this table correspond to Figure 12b of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on $g_U$ in the VLQ BM 3 scenario in a mass range of $1\leq m_U\leq 5\text{ TeV}$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. Numerical values provided in this table correspond to Figure 92 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $60\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11a of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $80\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 41 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $95\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 42 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $100\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11b of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $120\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 43 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $125\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11c of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $130\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 44 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $140\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 45 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $160\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11d of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $180\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 46 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 47 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $250\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11e of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 48 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $350\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 49 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 50 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $450\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 51 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11f of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 52 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $700\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 53 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 54 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 55 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11g of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11h of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 56 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 57 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 58 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 59 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 60 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 61 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 62 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 63 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11i of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $60\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11a of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $80\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 41 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $95\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 42 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $100\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11b of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $120\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 43 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $125\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11c of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $130\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 44 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $140\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 45 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $160\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11d of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $180\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 46 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 47 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $250\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11e of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 48 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $350\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 49 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 50 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $450\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 51 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11f of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 52 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $700\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 53 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 54 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 55 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11g of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11h of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 56 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 57 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 58 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 59 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 60 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 61 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 62 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 63 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11i of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 1\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 99 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 2\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 100 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 3\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 101 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 4\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 102 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 5\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 103 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 1\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 104 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 2\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 105 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 3\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 106 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 4\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 107 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 5\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 108 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 1\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 109 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 2\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 110 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 3\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 111 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 4\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 112 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 5\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 113 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ quantile contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ quantile contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ quantile contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ quantile contour of Figure 13a of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ quantile contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ quantile contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ quantile contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ quantile contour of Figure 13b of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 114 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 115 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 116 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 117 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 118 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 119 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario. Numerical values provided in this table correspond to the observed contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 120 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 122 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 123 of the auxilliary material of the publication.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 25 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 25 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 25 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8a of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8a of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8a of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 26 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 26 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 26 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8b of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8b of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8b of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 27 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 27 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 27 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 28 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 28 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 28 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8e of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8e of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8e of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8f of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8f of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8f of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 21 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 21 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 21 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 23 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 23 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 23 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 24 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 24 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 24 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 20 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 20 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 20 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.