The ratio of the cross sections for photoproduction of neutral pions from neutrons to that from protons has been obtained at average photon energies of 750, 875, and 1050 mev at a pion CM angle of 60° and at average photon energies of 875 and 1050 mev at a pion CM angle of 90°. The experimental technique required simultaneous detection of both the pions and the nucleons. Pions were detected by three scintillation counters. Lead plates of 2.4 radiation lengths and 1.2 radiation lengths were placed in front of the second and third counters. Neutral pions were identified by the absence of output in the first counter and the large outputs in the second and third counters. Nucleons were detected in two scintillation counters. The second of the two counters is 11” thick and has approximately 20% efficiency of detecting neutrons. Neutrons were identified by the absence of output in the first counter. The energy of the incident photons was determined by synchrotron subtraction. Since the statistical accuracy of synchrotron subtraction is poor, a system of three fast coincidence circuits was used as a time-of-flight instrument to reduce the number of events initiated by low energy photons. The statistical errors assigned to the ratio range between 15-30%. The results of this experiment agree with the results of Bingham within statistical errors, but show a general tendency for the σ^(no)/ σ^o ratio to lower. The ratio of σ^(no)/ σ^o obtained in this experiment ranges between 0.4 and 0.8. The cross sections for neutral pion photoproduction from neutrons are derived from the σ^(no)/ σ^o ratio and the Caltech data on neutral pion photoproduction from hydrogen.
No description provided.
No description provided.
The differential cross section for the reaction γ+p→π++n was measured at 32 laboratory photon energies between 589 and 1269 MeV at the Caltech synchrotron. At each energy, data have been obtained at typically 15π+ angles between 6° and 90° in the center-of-mass (c.m.) system. A magnetic spectrometer was used to detect the π+ photoproduced in a liquid-hydrogen target. Two Cerenkov counters were used to reject background of positrons and protons. The data clearly show the presence of a pole in the production amplitude due to one-pion exchange. Moravcsik fits to the angular distributions, including data from another experiment carried out by Thiessen, are presented. Extrapolation of these fits to the pole gives a value for the pion-nucleon coupling constant of 14.2±1.7, which is consistent with the accepted value. The "second" and "third" pion-nucleon resonances are evident as peaks in the total cross section and as changes in the shape of the angular distributions. At the third resonance, there is evidence for both a D52 and an F52 amplitude. The absence of large variations with energy in the 0° and 180° cross sections implies that the second and third resonances are mostly produced from an initial state with helicity 32.
No description provided.
No description provided.
No description provided.
An investigation has been performed of some properties of Σ(1660) produced in the reaction K−p→Σ+(1660)π− at 2.87 GeV/c incident K− momentum. The decay modes observed for this state include Λ(1405)π and Σπ. The spin and parity are measured to be JP=32−. The differential cross section of the Λ(1405)π decay mode is sharply peaked in the forward direction, falling exponentially with a slope of 5.6 ± 0.7 (GeV/c)−2, while the slope for the Σ0π+ decay mode is 2.1 ± 0.4 (GeV/c)−2. The difference in the ratio of backward to total events for the two decay modes also suggests that two Σ(1660)'s exist.
No description provided.
No description provided.
We have done a JP analysis of the low-mass π+ω system, using the reaction π+p→π+ωp at 7.1 GeV/c. We find that the B resonance cannot be JP=0− and must belong to the unnatural-parity series (1+, 2−, 3+,...), regardless of the amount of interference between the B and the background. If we assume that the B does not interfere with the background, we find that all JP states for the resonance are rejected except for 1+. Even if interference effects are allowed in the analysis, a good fit with reasonable parameters is obtained only with the 1+ hypothesis for the B meson. In an appendix, we give relevant theoretical formulas appropriate for a πω system with any number of spin-parity states and arbitrary degrees of interference among them.
TAKING INTO ACCOUNT 0- AND 1+ SMOOTH BACKGROUND UNDER THE B MESON. EVENTS WITH 1.08 < M(PI+ OMEGA) < 1.38 GEV.
A very narrow resonance with a mass of 3.1 GeV/c2 is observed in the reaction n+Be→μ++μ−+X. The total cross section for this process, as well as its P⊥2 and x distribution, are given.
The cross section per nucleon times the branching ratio.
A very narrow resonance with a mass of 3.105 GeV/c2 is observed in the reaction γ+Be→μ++μ−+X. The total cross section for this process, as well as its t distribution, is given.
THIS IS CROSS SECTION PER BERYLLIUM NUCLEUS ASSUMING ONLY COHERENT OR QUASI-ELASTIC SCATTERING FROM A SINGLE NUCLEON. FORWARD DIFFERENTIAL CROSS SECTIONS QUOTED IN TABLE 1 OF T. NASH ET AL., PRL 36, 1233 (1976).
From a large-statistics π+p experiment at 7.1 GeV/c, data are presented on the reactions π+p→ρ0Δ++(1238) and π+p→ωΔ++(1238). Cross sections, differential cross sections, and vector-meson single-density-matrix elements are presented and a general comparison of the production properties of the two reactions is given. In addition to (ρ,ω)Δ++(1238) production there is also strong evidence for production of a π+p enhancement with mass ∼ 1880 MeV, Γ∼200 MeV, and J≥72 produced in association with the ρ and ω resonances. Detailed properties of this structure are presented and its production mechanism is compared with that of the corresponding Δ(1238) reactions. This state is also observed in the reaction K+p→K*0(890)Δ++(1880) at 12.0 GeV/c, for which data are also presented.
STATISTICAL ERRORS ONLY.
No description provided.
JACKSON FRAME.
Strong evidence is presented for quasi-two-body production of a π + p enhancement with mass 1881±6MeV and width 219±23MeV, recoiling off vector mesons ϱ O and ω from π + p interactions at 7.1 GeV/ c and K * o (890) from K + p interactions at 12 GeV/ c . The most probable J P assignment for this object is 7/2 + , making it a likely candidate for the Regge recurrence of Δ(1236).
JACKSON FRAME.
JACKSON FRAME.
We report on a search for Ξ* production in the mass range 1.5-2.0 GeV / c2 in K−n interactions at 2.87 GeV / c. Upper limits on Ξ* production cross sections, as well as reaction cross sections for those final states in which Ξ*'s may be observed, are presented. In particular, an upper limit of 5.4 μb is placed on production of an isospin-−32 Ξ*−−.
CROSS SECTIONS ARE QUOTED FOR THE SAME FINAL STATE DERIVED FROM DIFFERENT TOPOLOGIES.
UPPER LIMITS AT 90 PCT CONFIDENCE LEVEL FOR RESONANCE ABOVE SMOOTH BACKGROUND.
No description provided.
Data on correlations between momentum analysed protons, pions or K mesons, and charged particles produced in pp collisions at the CERN ISR are presented. The charged particles were detected in a ∼4 π scintillation counter hodoscope. The pseudo-rapidity distributions are well described by production within the limits of cylindrical phase space, with negative kaons and antiprotons yielding narrower distributions than protons, pions and positive kaons. The azimuthal distributions show symmetry around the t -channel axis in the rest frame of the recoiling mass M x in pp → aX (a = detected proton, pion, positive kaon).
No description provided.
No description provided.
No description provided.