Results from the study of the rare decays $K^+\toπ^+ν\barν$, $K^{+}\rightarrowπ^{+}μ^{+}μ^{-}$ and $K^{+}\rightarrowπ^{+}γγ$ at the NA62 experiment at CERN are interpreted in terms of improved limits for $\rm{B}(K^+\toπ^+X)$ and coupling parameters of hidden-sector models, where $X$ is a mediator. World-leading limits are achieved for dark photon, dark scalar and axion-like particle models.
Number of expected and observed events as a function of squared missing mass.
Single Event Sensitivity (SES) for the $K^{+}\rightarrow\pi^{+}X$ search as a function of X mass.
Model-independent constraints on the branching ratio of the $K^{+}\rightarrow\pi^{+}X$ decay
The NA62 experiment at CERN has the capability to collect data in a beam-dump mode, where 400 GeV protons are dumped on an absorber. In this configuration, New Physics particles, including dark photons, dark scalars, and axion-like particles, may be produced in the absorber and decay in the instrumented volume beginning approximately 80 m downstream of the dump. A search for these particles decaying in flight to hadronic final states is reported, based on an analysis of a sample of $1.4 \times 10^{17}$ protons on dump collected in 2021. No evidence of a New Physics signal is observed, excluding new regions of parameter spaces of multiple models.
90% CL upper limit in dark photon coupling vs mass parameter space for combined di-lepton and hadronic final states, using bremsstrahlung production without the time-like form factor.
90% CL upper limit in dark photon coupling vs mass parameter space for combined di-lepton and hadronic final states, including mixing and bremsstrahlung production with a time-like form factor.
90% CL upper limit in dark scalar coupling vs mass parameter space for combined di-lepton and hadronic final states.