None
The cross section limits are set using two methods. The first (C=COUNT) is a simple counting experiment, and the second (C=SHAPE) use the shape of the dij et mass spectrum input to a likelihood fit.
The differential cross-sections for e + e − → e + e − , e + e − → μ + μ − and e + e − → τ + τ − , and the total cross-section for e + e − → qq̄ at centre-of-mass energies of 130–140 GeV were studied using about 5 pb −1 of data collected with the OPAL detector at LEP in October and November 1995. The results are in agreement with the Standard Model predictions. Four-fermion contact interaction models were fitted to the data and lower limits were obtained on the energy scale Λ at the 95% confidence level.
No description provided.
No description provided.
No description provided.
The production of the $J^{P}={1⩈er 2}^{+}$ octet baryons Λ and Ξ−, the $J^{P}={3⩈er 2}^{+}$ decuplet baryons Σ(1385)±Ξ(1530)0, and Ω−, and the $J^{P}={3⩈er 2}^{-}$ orbitally excited state Λ(1520) has been measured in a sample of approximately 3.65 million hadronic Z0 decays. The integrated rates and the differential cross-sections as a function of xE, the scaled energy, are determined. The differential cross-sections of the Λ and Ξ− baryons are found to be softer than those predicted by both the JETSET and HERWIG Monte Carlo generators. The measured baryon yields are found to disagree with the simple diquark picture where only one tuning parameter for spin 1 diquarks is allowed. The yields are further compared with a thermodynamic model of hadron production which includes the production of orbitally excited mesons and baryons. The momentum spectra of Λ, Ξ−, Σ(1385)±Ξ(1530)0, and Λ(1520) are also compared to the predictions of an analytical QCD formula.
Differential cross section for LAMBDA production.
(1/LN(X)) distribution for LAMBDA production.
Differential cross section for XI- production.
A measurement of the charm and bottom forward-backward asymmetry in e+e− annihilations is presented at energies on and around the peak of the Z0 resonance. Decays of the Z0 into charm and bottom quarks are tagged using D mesons identified in about 4 million hadronic decays of the Z0 boson recorded with the OPAL detector at LEP between 1990 and 1995. Approximately 33000 D mesons are tagged in seven different decay modes. From these the charm and bottom asymmetries are measured in three energy ranges around the Z0 peak: \(\matrix {A_{\rm FB}^{\rm c}=0.039\pm 0.051\pm 0.009\cr A_{\rm FB}^{\rm c}=0.063\pm 0.012\pm 0.006\cr A_{\rm FB}^{\rm c}=0.158\pm 0.041\pm 0.011}\)\(\matrix {A_{\rm FB}^{\rm b}=0.086\pm 0.108\pm 0.029\cr A_{\rm FB}^{\rm b}=0.094\pm 0.027\pm 0.022\cr A_{\rm FB}^{\rm b}=0.021\pm 0.090\pm 0.026}\)\(\matrix{\langle E_{cm}\rangle =89.45\ {\rm GeV}\cr \langle E_{cm}\rangle =91.22\ {\rm GeV}\cr \langle E_{cm}\rangle =93.00\ {\rm GeV}}\) The results are in agreement with the predictions of the standard model and other measurements at LEP.
Forward-backward asymmetry.
No description provided.
The production rates of the $J_{P}={1⩈er 2}^{+}$ octet Σ baryons in hadronic Z0 decays have been measured using the OPAL detector at LEP. The inclusive production rates per hadronic Z0 decay of the three isospin states (including the respective antiparticle) have been separately measured for the first time: $άtrix {n_{Sigma^{+}}=0.099pm 0.008pm 0.013ŗ n_{Sigma^{0}}=0.071pm 0.012pm 0.013ŗ n_{Sigma^{-}}=0.083pm 0.006pm 0.009ŗ}$ where the first error is statistical and the second is systematic. Differential cross-sections are also presented for the Σ+ and Σ− and compared with JETSET and HERWIG predictions. Assuming full isospin symmetry, the average inclusive rate is: ${1⩈er 3}[n_{Sigma^{+}+Sigma^{0}+Sigma^{-}}]=0.084pm 0.005 ({⤪ stat.}) pm 0.008 ({⤪ syst.})$.
Differential cross section for SIGMA+ production.
Differential cross section for SIGMA- production.
No description provided.
We have searched for a heavy neutral gauge boson, Z ′, using the decay channel Z ′ → ee . The data were collected with the DØ detector at the Fermilab Tevatron during the 1992–1993 p p collider run at s =1.8 TeV from an integrated luminosity of 15±1 pb −1 . Limits are set on the cross section times brancing ratio for the process p p → Z′ → ee as a function of the Z ′ mass. We exclude the existence of a Z ′ of mass less than 490 GeV/c 2 , assuming a Z ′ with the same coupling strengths to quarks and leptons as the standard model Z boson.
No description provided.
A measurement of theτ lepton polarization and its forward-backward asymmetry at the Z0 resonance using the OPAL detector is described. The measurement is based on analyses of τ→ρντ, ττπ(K)ντ,\(\tau\to e\bar \nu _e \nu _\tau\),\(\tau\to \mu \bar \nu _\mu\nu _\tau\) andτ→a1ντ decays from a sample of 89075 e+e−→τ+τ− candidates corresponding to an integrated luminosity of 117 pb−1. Assuming that theτ lepton decays according to V-A theory, we measure the averageτ polarization at √s=MZ to be 〈P〉=(−13.0±0.9±0.9)% and theτ polarization forward-backward asymmetry to be ApolFB=(−9.4±1.0±0.4)%, where the first error is statistical and the second systematic. These results are consistent with the hypothesis of lepton universality and, when combined, can be expressed as a measurement of sin2θefflept=0.2334±0.0012 within the context of the Standard Model.
No description provided.
We have measured the cross section of γ+D*± production in p¯p collisions at s=1.8TeV using the Collider Detector at Fermilab. In this kinematic region, the Compton scattering process (gc→γc) is expected to dominate and thus provide a direct link to the charm quark density in the proton. From the 45±18 γ+D*± candidates in a 16.4pb−1 data sample, we have determined the production cross section to be 0.38±0.15(stat)±0.11(syst) nb for the rapidity range |y(D*±)|<1.2 and |y(γ)|<0.9, and for the transverse momentum range pT(D*±)>6GeV/c and 16
No description provided.
We report a measurement of the ratios of the decay rates of the B~+, B~0 and B~0_s mesons into exclusive final states containing a J/psi meson. The final states were selected from 19.6 pb~{-1} of p-pbar collisions recorded by the Collider Detector at Fermilab. These data are interpreted to determine the bquark fragmentation fractions f_u, f_d and f_s. We also determine the branching fractions for the decay modes B~+ --> J/psi K~+, B~+ --> J/psi K~*(892)~+, B~0 --> J/psi K~0, B~0 --> J/psi K~*(892)~0 and B_s~0 --> J/psi phi(1020). We discuss the implications of these measurements to B meson decay models.
Charge conjugated states are implied. FD is considered as a quark fragmentation fraction.
We present results from a search for anomalous WW and WZ production in ppbar collisions at sqrt(s) = 1.8 TeV. We used ppbar->evjjX events observed during the 1992-1993 run of the Fermilab Tevatron collider, corresponding to an integrated luminosity of 13.7 +- 0.7 pb^-1. A fit to the transverse momentum spectrum of the W boson yields direct limits on the CP-conserving anomalous WWgamma and WWZ coupling parameters of -0.9 < delta kappa < 1.1 (with lambda = 0) and -0.6 < lambda < 0.7 (with delta kappa = 0) at the 95% confidence level, for a form factor scale Lambda = 1.5 TeV, assuming that the WWgamma and WWZ coupling parameters are equal.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.