Date

Analysis of hadronic final states and the photon structure function F2(gamma) in deep inelastic electron photon scattering at LEP.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 33-48, 1997.
Inspire Record 426209 DOI 10.17182/hepdata.47770

Deep inelastic electron-photon scattering is studied in the Q2 ranges from 6 to 30 GeV2 and from 60 to 400 GeV2 using the full sample of LEP data taken with the OPAL detector at centre-of-mass energies close to the Z0 mass, with an integrated luminosity of 156.4 pb−1. Energy flow distributions and other properties of the measured hadronic final state are compared with the predictions of Monte Carlo models, including HERWIG and PYTHIA. Sizeable differences are found between the data and the models, especially at low values of the scaling variable x. New measurements are presented of the photon structure function $F_2^{αmma }(x,Q^2)$, allowing for the first time for uncertainties in the description of the final state by different Monte Carlo models. The differences between the data and the models contribute significantly to the systematic errors on $F_2^{αmma }$. The slope ${⤪ d}(F_2^{αmma }/←pha )/{⤪ d ln} Q^2$ is measured to be $0.13_{-0.04}^{+0.06}$.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of inclusive omega and eta' production in hadronic Z decays.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 393 (1997) 465-476, 1997.
Inspire Record 427107 DOI 10.17182/hepdata.47618

We present a study of the inclusive ω and η′ production based on 3.1 million hadronic Z decays recorded with the L3 detector at LEP during 1991–1994. The production rates per hadronic Z decay have been measured to be 1.17±0.17 ω mesons and 0.25±0.04 η′ mesons. The production rates and the differential cross sections have been compared with predictions of the JETSET and the HERWIG Monte Carlo models. We have observed that the differential cross sections can be described by an analytical quantum chromodynamics calculation.

12 data tables

Final production rates per hadronic Z0 decay.

Corrected production rates from the omega --> pi+ pi- p0 decay mode. Extrapolation to full x range.

Corrected production rates from the etaprime --> pi+ pi- eta decay mode. Extrapolation to full x range.

More…

Measurement of the QED longitudinal structure function of the photon using azimuthal correlations at LEP.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 49-55, 1997.
Inspire Record 426207 DOI 10.17182/hepdata.47704

We have studied azimuthal correlations in singly-tagged e+e− → e+e−μ+μ− events at an average Q2 of 5.2 GeV2. The data were taken with the OPAL detector at LEP at e+e− centre-of-mass energies close to the Z0 mass, with an integrated luminosity of approximately 100 pb−1. The azimuthal correlations are used to extract the ratio $F_{B}^{αmma}/F_{2}^{αmma}$ of the QED structure functions $F_{B}^{αmma}(x,Q^{2})$ and $F_{2}^{αmma}(x,Q^{2})$ of the photon. In leading order and neglecting the muon mass $F_{B}^{αmma}$ is expected to be identical to the longitudinal structure function $F_{L}^{αmma}$. The measurement of $F_{B}^{αmma}/F_{2}^{αmma}$ is found to be significantly different from zero and to be consistent with the QED prediction.

1 data table

No description provided.


Measurement of the mass of the W boson in e+ e- collisions at S**(1/2) = 161-GeV

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 389 (1996) 416-428, 1996.
Inspire Record 425320 DOI 10.17182/hepdata.47712

This letter describes the first observation of W boson pair production at a centre-of-mass energy s =161 GeV in the OPAL detector at LEP. The analysis is sensitive to all expected W + W − decay channels. A total of 28 events have been selected for an integrated luminosity of 9.89±0.06 pb −1 . This is consistent with the Standard Model expectation, including signal and background contributions. The W pair production cross-section is measured to be σ WW = 3.62 −0.82 +0.93 ±0.16 pb. An analysis of the predicted M W dependence of the accepted cross-section, taking into account interference in the four-fermion production processes, yields M W = 80.40 −0.41−0.10 +0.44+0.09 ±0.10 GeV, where the first and second uncertainties are statistical and systematic, respectively, and the third arises form the beam energy uncertainty.

1 data table

No description provided.


Search for excited leptons in e+ e- collisions at s**(1/2) = 161-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 391 (1997) 197-209, 1997.
Inspire Record 425066 DOI 10.17182/hepdata.47769

We have searched for excited states of charged and neutral leptons, e ∗ , μ ∗ , τ ∗ and ν ∗ , in e + e − collisions at s =161 GeV using the OPAL detector at LEP. No evidence for their existence was found. With the most common coupling assumptions, the topologies from excited lepton pair production include ℓ + ℓ − γγ and ℓ + ℓ − W + W − , with the subsequent decay of the virtual W bosons. From the analysis of these topologies, 95% confidence level lower mass limits of 79.9 GeV for e ∗ , 80.0 GeV for μ ∗ , 79.1 GeV for τ ∗ , 78.3 GeV for ν e ∗ , 78.9 GeV for ν μ ∗ and 76.2 GeV for ν τ ∗ are inferred. From the analysis of W + W − and γγ topologies with missing energy and using alternative coupling assingments which favour charged ℓ ∗± and photonic ν ∗ decays, 95% confidence level lower mass limits of 77.1 GeV for each ℓ ∗± flavour and 77.8 GeV for each ν ∗ flavour are inferred. From the analysis of the ℓ + ℓ − γ , ℓ ± W ∓ and single γ final states expected from excited lepton single production, upper limits on the ratio of the coupling to the compositeness scale, f Λ , are determined for excited lepton masses up to the kinematic limit.

1 data table

95 pct upper limits for pair production of the excited leptons.


Observation of W+ W- production in anti-p p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 78 (1997) 4536-4540, 1997.
Inspire Record 423258 DOI 10.17182/hepdata.42247

We present results of a search for W+W− production through the leptonic decay channel W+W−→l+l−νν¯ in p¯p collisions at s=1.8TeV. In a 108pb−1 data sample recorded with the Collider Detector at Fermilab, five W+W− candidates are found with an expected standard model background of 1.2±0.3 events. The W+W− production cross section is measured to be σ(p¯p→W+W−)=10.2−5.1+6.3(stat)±1.6(syst)pb, in agreement with the standard model prediction. Limits on WWγ and WWZ anomalous couplings are presented.

1 data table

No description provided.


Inclusive jet production in photon-photon collisions at s**(1/2) = 130-GeV and 136-GeV

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 73 (1997) 433-442, 1997.
Inspire Record 424635 DOI 10.17182/hepdata.47713

The inclusive one- and two-jet production cross-sections are measured in collisions of quasi-real photons radiated from the LEP beams at e+e− centre-of-mass energies \(\sqrt{s}_{\rm ee}=130\) and 136 GeV using the OPAL detector at LEP. Hard jets are reconstructed using a cone jet finding algorithm. The differential jet cross-sections \({\rm d}\sigma /{\rm d}E_{T}^{\rm jet}\) are compared to next-to-leading order perturbative QCD calculations. Transverse energy flows in jets are studied separately for direct and resolved two-photon events.

4 data tables

Inclusive one-jet cross section.

One-jet rapidity distribution.

Inclusive two-jet cross section.

More…

Measurement of dijet angular distributions at CDF

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 5336-5341, 1996.
Inspire Record 423414 DOI 10.17182/hepdata.54980

We have used 106 pb~-1 of data collected in proton-antiproton collisions at sqrt(s)=1.8 TeV by the Collider Detector at Fermilab to measure jet angular distributions in events with two jets in the final state. The angular distributions agree with next to leading order (NLO) predictions of Quantum Chromodynamics (QCD) in all dijet invariant mass regions. The data exclude at 95% confidence level (CL) a model of quark substructure in which only up and down quarks are composite and the contact interaction scale is Lambda_ud(+) < 1.6 TeV or Lambda_ud(-) < 1.4 TeV. For a model in which all quarks are composite the excluded regions are Lambda(+) < 1.8 TeV and Lambda(-) < 1. 6 TeV.

2 data tables

No description provided.

Di-jet angular ratio, defined as the number with CHI < 2.5 divided by the number with CHI between 2.5 and 5.


Measurement of the branching fraction B (B(u)+ ---> J / psi pi+) and search for B(c)+ ---> J / psi pi+

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 5176-5181, 1996.
Inspire Record 423148 DOI 10.17182/hepdata.50101

We report on a measurement of the branching fraction of the Cabibbo-suppressed decay Bu+→J/ψπ+, where J/ψ→μ+μ−. The data were collected by the Collider Detector at Fermilab during 1992–1995 and correspond to an integrated luminosity of 110pb−1 in p¯p collisions at s=1.8TeV. A signal of 28−9+10 events is observed and we determine the ratio of branching fractions B(Bu+→J/ψπ+)/B(Bu+→J/ψK+) to be [5.0−1.7+1.9(stat)±0.1(syst)]%. Using the world average value for B(Bu+→J/ψK+), we calculate the branching fraction B(Bu+→J/ψπ+) to be (5.0−1.9+2.1)×10−5. We also search for the decay Bc+→J/ψπ+ and report a 95% confidence level limit on σ(Bc+)B(Bc+→J/ψπ+)/σ(Bu+)B(Bu+→J/ψK+) as a function of the Bc+ lifetime.

1 data table

The ratio of the cross sections times the branching fraction.


Results from a search for a neutral scalar produced in association with a W boson in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
FERMILAB-CONF-96-258-E, 1996.
Inspire Record 424540 DOI 10.17182/hepdata.43005

None

1 data table

The cross section limits are set using two methods. The first (C=COUNT) is a simple counting experiment, and the second (C=SHAPE) use the shape of the dij et mass spectrum input to a likelihood fit.