Antiproton-proton elastic scattering was measured at c.m.s. energies √s =546 and 1800 GeV in the range of four-momentum transfer squared 0.025<-t<0.29 GeV2. The data are well described by the exponential form ebt with a slope b=15.28±0.58 (16.98±0.25) GeV−2 at √s =546 (1800) GeV. The elastic scattering cross sections are, respectively, σel=12.87±0.30 and 19.70±0.85 mb.
Final results (systematic errors included).
Final results (systematic errors included).
Statistical errors only. Data supplied by S. Belforte.
We report a measurement of the diffraction dissociation differential cross section d2σSD/dM2dt for p¯p→p¯X at √s =546 and 1800 GeV, M2/s<0.2 and 0≤-t≤0.4 GeV2. Our results are compared to theoretical predictions and to extrapolations from experimental results at lower energies.
Single diffraction dissociation cross section.
We report a measurement of the proton-antiproton total cross section σT at c.m.s. energies √s =546 and 1800 GeV. Using the luminosity-independent method, we find σT=61.26±0.93 mb at √s =546 GeV and 80.03±2.24 mb at √s =1800 GeV. In this energy range, the ratio σel/σT increases from 0.210±0.002 to 0.246±0.004.
No description provided.
Assuming RHO = 0.15.
The growth and development of “charged particle jets” produced in proton-antiproton collisions at 1.8 TeV are studied over a transverse momentum range from 0.5 GeV/c to 50 GeV/c. A variety of leading (highest transverse momentum) charged jet observables are compared with the QCD Monte Carlo models HERWIG, ISAJET, and PYTHIA. The models describe fairly well the multiplicity distribution of charged particles within the leading charged jet, the size of the leading charged jet, the radial distribution of charged particles and transverse momentum around the leading charged jet direction, and the momentum distribution of charged particles within the leading charged jet. The direction of the leading “charged particle jet” in each event is used to define three regions of η−φ space. The “toward” region contains the leading “charged particle jet,” while the “away” region, on the average, contains the away-side jet. The “transverse” region is perpendicular to the plane of the hard 2-to-2 scattering and is very sensitive to the “underlying event” component of the QCD Monte Carlo models. HERWIG, ISAJET, and PYTHIA with their default parameters do not describe correctly all the properties of the “transverse” region.
Average number of charged particles as a function of the relative azimuthal angle between the individual charged particle and the overall leading jet angle.
Average scalar PT sum of charged particles as a function of the relative azimuthal angle between the individual charged particle for 3 different lower limits of the leading jet PT. and the overall jet angle.
The average number of toward(DPHI < 60 DEG), transverse (DPHI 60 TO 120 DEG) and away (DPHI > 120 DEG) charged particles as a function of the PT of the leading charged jet. The data in this table are from the Min-Bias events.
We have measured dijet angular distributions at √s =1.8 TeV with the Collider Detector at Fermilab and the Tevatron p¯p Collider and find agreement with leading-order QCD. By comparing the distribution for the highest dijet invariant masses with the prediction of a model of quark compositeness, we set a lower limit on the associated scale parameter Λc at 330 GeV (95% C.L.).
Numerical values read from figure in preprint.
The cross section for the production and subsequent decay to electron and neutrino of the W intermediate vector boson has been measured in 1.8-TeV p¯p collisions at the Fermilab Tevatron Collider. An analysis of events with missing transverse energy greater than 25 GeV and with an electron of transverse energy greater than 15 GeV from a datum sample of 25.3 nb−1 gives σB=2.6±0.6±0.5 nb.
Branching ratio to electron and neutrino.
Measurements of inclusive transverse-momentum spectra for charged particles produced in proton-antiproton collisions at √2 of 630 and 1800 GeV are presented and compared with data taken at lower energies.
No description provided.
No description provided.
Results of fit to invariant cross section of the form AP0**N/(PT + P0)**N.
The charged-particle fractional momentum distribution within jets, D(z), has been measured in dijet events from 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. As expected from scale breaking in quantum chromodynamics, the fragmentation function D(z) falls more steeply as dijet invariant mass increases from 60 to 200 GeV/c2. The average fraction of the jet momentum carried by charged particles is 0.65±0.02(stat)±0.08(syst).
No description provided.
The production rate of charged D* mesons in jets has been measured in 1.8-TeV p¯p collisions at the Fermilab Tevatron with the Collider Detector at Fermilab. In a sample of approximately 32 300 jets with a mean transverse energy of 47 GeV obtained from an exposure of 21.1 nb−1, a signal corresponding to 25.0±7.5(stat)±2.0(syst) D*±→K∓π±π± events is seen above background. This corresponds to a ratio N(D*++D*−)/N(jet) =0.10±0.03±0.03 for D* mesons with fractional momentum z greater than 0.1.
Mean jet transverse energy is 47 GeV. Branching rates for D* --> D0 PI of 0.57 +- 0.04 (DSYS=0.04) and D0 --> K- PI+ of 0.042 +- 0.004 (DSYS=0.004), from MARK-III have been used.
Inclusive jet production at s=1.8 TeV has been measured in the CDF detector at the Fermilab Tevatron p¯p Collider. Jets with transverse energies (Et) up to 250 GeV have been observed. The Et dependence of the inclusive jet cross section is consistent with leading-order quantum-chromodynamic calculations, and comparison with lower-energy data shows deviations from scaling consistent with QCD. A lower limit of 700 GeV (95% confidence level) is placed on the quark compositeness scale parameter Λc associated with an effective contact interaction.
No description provided.