Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into $\mu^+\mu^-$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S))$$\gt$$R_\mathrm{pPb}(\Upsilon(2S))$$\gt$$R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon$$\lt$ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert$$\lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.
Differential cross section times dimuon branching fraction of Y(1S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.
Differential cross section times dimuon branching fraction of Y(2S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.
Differential cross section times dimuon branching fraction of Y(3S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.
The leptonic and inclusive hadronic decay branching fractions of the W boson are measured using proton-proton collision data collected at $\sqrt{s} =$ 13 TeV by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Events characterized by the production of one or two W bosons are selected and categorized based on the multiplicity and flavor of reconstructed leptons, the number of jets, and the number of jets identified as originating from the hadronization of b quarks. A binned maximum likelihood estimate of the W boson branching fractions is performed simultaneously in each event category. The measured branching fractions of the W boson decaying into electron, muon, and tau lepton final states are (10.83 $\pm$ 0.10)%, (10.94 $\pm$ 0.08)%, and (10.77 $\pm$ 0.21)%, respectively, consistent with lepton flavor universality for the weak interaction. The average leptonic and inclusive hadronic decay branching fractions are estimated to be (10.89 $\pm$ 0.08)% and (67.32 $\pm$ 0.23)%, respectively. Based on the hadronic branching fraction, three standard model quantities are subsequently derived: the sum of squared elements in the first two rows of the Cabibbo-Kobayashi-Maskawa (CKM) matrix $\sum_{ij}\vert V_{ij}\vert^{2}$ = 1.984 $\pm$ 0.021, the CKM element $\vert V_\mathrm{cs}\vert$ = 0.967 $\pm$ 0.011, and the strong coupling constant at the W boson mass scale, $\alpha_\mathrm{S}(m^2_\mathrm{W})$ = 0.095 $\pm$ 0.033.
Summary of the impacts of each source of uncertainty (quoted as a percent of the total systematic uncertainty) for each W branching fraction. Whenever multiple NPs impact a common source of systematic uncertainty, each component is varied independently and the range of impacts is given.
Values of the W boson decay branching fractions based on CMS measurement.
Ratios of W boson leptonic branching fractions.
Angular distributions of the decay B$^+$$\to$ K$^*$(892)$^+\mu^+\mu^-$ are studied using events collected with the CMS detector in $\sqrt{s} =$ 8 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 20.0 fb$^{-1}$. The forward-backward asymmetry of the muons and the longitudinal polarization of the K$^*$(892)$^+$ meson are determined as a function of the square of the dimuon invariant mass. These are the first results from this exclusive decay mode and are in agreement with a standard model prediction.
The measured signal yields, FL, AFB in bins of the dimuon invariant mass squared. The first uncertainty is statistical and the second is systematic.
A search for exclusive or quasi-exclusive gamma gamma to W+W- production, via pp to p(*) W+W- p(*) to p(*) mu+/- e-/+ at sqrt(s) = 8 TeV, is reported using data corresponding to an integrated luminosity of 19.7 inverse femtobarns. Events are selected by requiring the presence of an electron-muon pair with large transverse momentum pt(mu+/- e-/+) > 30 GeV, and no associated charged particles detected from the same vertex. The 8 TeV results are combined with the previous 7 TeV results (obtained for 5.05 inverse femtobarns of data). In the signal region, 13 (2) events are observed over an expected background of 3.9 +/- 0.6 (0.84 +/-0.15) events for 8 (7) TeV, resulting in a combined excess of 3.4 standard deviations over the background-only hypothesis. The observed yields and kinematic distributions are compatible with the standard model prediction for exclusive and quasi-exclusive gamma gamma to W+W- production. Upper limits on the anomalous quartic gauge coupling operators a[W;0,C] (dimension-6) and f[M0,1,2,3] (dimension-8), the most stringent to date, are derived from the measured dilepton transverse momentum spectrum.
8 TeV cross section multiplied by branching fraction to opposite-sign mue final states, corrected for all experimental efficiencies and extrapolated to the full phase space.
The inclusive cross section for top quark pair production is measured in proton-proton collisions at sqrt(s) = 7 and 8 TeV, corresponding to 5.0 and 19.7 invers-femtobarns, respectively, with the CMS experiment at the LHC. The cross sections are measured in the electron-muon channel using a binned likelihood fit to multi-differential final state distributions related to identified b quark jets and other jets in the event. The measured cross section values are 173.6 +/- 2.1 (stat) +4.5-4.0 (syst) +/- 3.8 (lumi) pb at sqrt(s) = 7 TeV, and 244.9 +/- 1.4 (stat) +6.3-5.5 (syst) +/- 6.4 (lumi) pb at sqrt(s) = 8 TeV, in good agreement with QCD calculations at next-to-next-to-leading-order accuracy. The ratio of the cross sections measured at 7 and 8 TeV is determined, as well as cross sections in the fiducial regions defined by the acceptance requirements on the two charged leptons in the final state. The cross section results are used to determine the top quark pole mass via the dependence of the theoretically predicted cross section on the mass, giving a best result of 173.8 +1.7-1.8 GeV. The data at sqrt(s) = 8 TeV are also used to set limits, for two neutralino mass values, on the pair production of supersymmetric top squarks with masses close to the top quark mass.
Measurement of the visible $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV. The visible cross section is defined for events containing an oppositely charged $\rm{e}\mu$ pair from the decay chain ${\rm t} \rightarrow {\rm W b} \rightarrow {\ell} \nu {\rm b}$ (including ${\rm W} \rightarrow \tau \nu \rightarrow {\ell} \nu \nu \nu$) and with both leptons satisfying $p_T > 20\, \rm{GeV}$ and $|{\eta}| < 2.4$.
Measurement of the inclusive $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV.
Top quark pole mass at NNLO+NNLL extracted by comparing the measured $t\bar{t}$ production cross sections at 7 and 8 TeV with predictions employing different PDF sets. The uncertainties of the CT14 PDF set are scaled to 68% confidence level.
The differential cross section and charge asymmetry for inclusive pp to W + X to mu + neutrino + X production at sqrt(s) = 8 TeV are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8 inverse femtobarns recorded with the CMS detector at the LHC. These results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10E-3 to 10E-1.
Summary of the measured differential cross section $d\sigma^{+}/d\eta$. The theoretical predictions are obtained using the FEWZ 3.1 NNLO MC tool interfaced with five different PDF sets.
Summary of the measured differential cross section $d\sigma^{-}/d\eta$. The theoretical predictions are obtained using the FEWZ 3.1 NNLO MC tool interfaced with five different PDF sets.
Summary of the measured charge asymmetry $\mathcal{A}$. The theoretical predictions are obtained using the FEWZ 3.1 NNLO MC tool interfaced with five different PDF sets.
A measurement of the forward-backward asymmetry A[FB] of oppositely charged lepton pairs (mu mu and e e) produced via Z/gamma* boson exchange in pp collisions at sqrt(s) = 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.7 inverse femtobarns collected with the CMS detector at the LHC. The measurement of A[FB] is performed for dilepton masses between 40 GeV and 2 TeV and for dilepton rapidity up to 5. The A[FB] measurements as a function of dilepton mass and rapidity are compared with the standard model predictions.
Unfolded combined measurements of AFB in each M-|y| bin (mu+mu- and e+e- combined).
Unfolded measurement of AFB for the forward rapidity region (e+e-).
Unfolded measurements of AFB in each M-|y| bin (mu+mu-).
We study $\Lambda$ and $\bar{\Lambda}$ production asymmetries in $p \bar{p} \rightarrow \Lambda (\bar{\Lambda}) X$, $p \bar{p} \rightarrow J/\psi \Lambda (\bar{\Lambda}) X$, and $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$ events recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV. We find an excess of $\Lambda$'s ($\bar{\Lambda}$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $\bar{\Lambda}/\Lambda$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.
Forward-backward asymmetry $A_{FB}$ of $\Lambda$ and $\bar{\Lambda}$ with $p_T > 2.0$ GeV in minimum bias events $p \bar{p} \rightarrow \Lambda (\bar{\Lambda}) X$, events $p \bar{p} \rightarrow J/\psi \Lambda (\bar{\Lambda}) X$, and events $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$.
Forward-backward asymmetry $A_{FB}$ of $\Lambda$ and $\bar{\Lambda}$ in bins of $p_T$ in events $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$.
A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair (ll gamma). The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range 120 < m[ll gamma] < 150 GeV, and limits have been derived for the Higgs boson production cross section times branching fraction for the decay H to gamma* gamma to ll gamma, where the dilepton invariant mass is less than 20 GeV. For a Higgs boson with m[H] = 125 GeV, a 95% confidence level (CL) exclusion observed (expected) limit is 6.7 (5.9 +2.8/-1.8) times the standard model prediction. Additionally, an upper limit at 95% CL on the branching fraction of H to J/Psi gamma for the 125 GeV Higgs boson is set at 1.5E-3.
The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.
The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.
The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.
We present a measurement of the cross sections for the associated production of a $W$ boson with at least one heavy quark jet, $b$ or $c$, in proton-antiproton collisions. Data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ recorded with the D0 detector at the Fermilab Tevatron \ppbar Collider at $\sqrt{s}=1.96$ TeV are used to measure the cross sections differentially as a function of the jet transverse momenta in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as well as predictions from Monte Carlo generators.
The $W + b$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.
The $W + c$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.
The $\sigma(W+c)/\sigma(W+b)$ cross section ratio in bins of $c(b)$-jet $p_T$.