A study of inclusive production of the meson resonances ρ 0 , K ∗0 (892), ƒ 0 (975) and ƒ 2 (1270) in hadronic decays of the Z 0 is presented. The measured mean meson multiplicity per hadronic event is 0.83 ± 0.14 for the ρ 0 0.64 ± 0.24 for the K ∗0 (892), 0.10 ± 0.04 for the ƒ 0 (975) in the momentum range p > 0.05 p beam ( x p > 0.05) and 0.11 ± 0.05 for the ƒ 2 (1270) for x p > 0.1 . These values and the corresponding differential cross sections ( 1 σ hadr ) d σ d x p for the vector mesons are in good agreement with the predictions of the JETSET 7.3 PS and HERWIG 5.4 models. The ƒ 2 (1270) production is overestimated by HERWIG but its x p -shape is correctly reproduced. The measured ratios of the production cross sections σ(ƒ 2 (1270)) σ(ρ 0 ) = 0.22 ± 0.08 and σ(ƒ 2 (1270)) σ(ƒ 0 (975)) = 3 −1 +7 for x p > 0.1 are consistent with the results obtained in hadronic reactions.
Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.
Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.
Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.
The production of the octet and decuplet baryons Λ, Ξ − , Σ (1385) ± , Ξ(1530) 0 and Ω − and the corresponding antibaryons has been measured in a sample of 485 000 hadronic Z 0 decays. Results on differential and integrated cross sections are presented. The differential cross section of Λ baryons is found to be softer than the one predicted by the Jetset and Herwig Monte Carlo generators. The measured decuplet yields are found to disagree with the simple diquark picture where only one tuning parameter for spin 1 diquarks is used. Comparisons of the momentum spectra for Λ and Ξ − with the predictions of an analytical QCD formula are also presented.
No description provided.
No description provided.
No description provided.
Results are reported of a study of neutral vector meson production in multihadronicZ0 decays in the OPAL experiment at LEP. Pions and kaons have been identified by specific ionisation energy loss andK±π∓ andK+K− mass spectra have been fitted, in bins of the scaled momentum variablexp, to combinations of resonance signals and non-resonant backgrounds. Rates are given forK*(892)° and ø(1020), and production cross sections are compared to the predictions of Monte Carlo models. Overall multiplicities have been determined as 0.76±0.07±0.06K*(892)° and 0.086±0.015±0.010 ø(1020) per hadronicZ0 decay (the quoted errors are respectively statistical and systematic). Momentum dependent distortions of the ππ mass spectra, possibly associated indirectly with Bose-Einstein effects, have prevented reliable measurement of the ρ(770)° cross section in this study.
No description provided.
No description provided.
No description provided.
Inclusive production of direct soft photons is studied inK+p andK+π interactions at 250 GeV/c. Total cross sections, Feynman-x and transverse momentum distributions of direct γ's are presented. The measured cross sections are several times larger than expected from QED inner bremsstrahlung, indicating the presence of an anomalous soft photon source. The model of Lichard and Van Hove, based on the “cold quark-gluon plasma” picture, agrees with the data.
Results extrapolated below p(gamma) = m(pi0)/2.
No description provided.
No description provided.
An analysis of the production of strange particles from the decays of the Z 0 boson into multihadronic final states is presented. The analysis is based on about 90 000 selected hadronic Z 0 decays collected by the DELPHI detector at LEP in 1990. K s 0 , K ∗± , Λ( Λ ) and Ξ − ( Ξ + ) have been identified by their characteristic decays. The measured production cross sections are compared with predictions of the Lund Monte Carlo tuned to data at PEP/PETRA energies.
No description provided.
No description provided.
No description provided.
The production of K 0 mesons in e + e − interactions at center of mass energies in the region of the Z 0 mass has been investigated with the OPAL detector at LEP. The rate is found to be 2.10±0.02±0.14 K 0 , Z 0 per hadronic event. The predictions from the JETSET and HERWIG generators agree very well with both the rate and the scale invariant cross section (1/σ had β) (dσ/d x E ) for K 0 production. Comparisons of the inclusive momentum spectrum with predictions of an analytical QCD formula and with data from lower center of mass energies are presented.
No description provided.
No description provided.
K0 multiplicity per hadronic event.
We report measurements of π±K±, and p, p¯ inclusive cross sections and fractions in e+e− annihilation at s=29 GeV, for the momentum interval 0.01
No description provided.
No description provided.
No description provided.
Inclusive production cross sections for photons and π0's ine+e− annihilation at a center of mass energy of 29 GeV have been measured. The π0 production spectrum agrees with a corresponding measurement for π±. The ratio of the π0 inclusive rate to the average for π± is 0.92±0.14. The fractions of the total energy carried by photons and π0's are 0.244±0.016 and 0.217±0.033, respectively. The fraction of total energy carried by all stable hadrons, prompt leptons and photons is determined to be 0.938±0.045, leaving 0.062±0.045 for neutrinos.
No description provided.
No description provided.
The inclusive production cross section of Λ, Λ¯ in e+e− annihilation at a c.m. energy of 29 GeV has been measured with the time-projection-chamber detector at PEP. The average Λ, Λ¯ multiplicity has been measured to be 0.197 ± 0.012(stat.) ±0.017(syst.). Λ−Λ¯ pairs have been observed in jets for the first time, and the average number of Λ−Λ¯ pairs per event has been measured to be 0.042 ± 0.017 ± 0.014.
No description provided.
No description provided.
No description provided.
The inclusive production cross sections and transverse momentum distributions of K*0 and KS0 mesons in e+e− annihilation at a center-of-mass energy of 29 GeV have been measured by means of the time projection chamber detector in the PEP-4 experiment. The mean multiplicites are found to be 0.49 ± 0.04(stat.) ± 0.07(syst.) (K*0+K―*0) and 1.22 ± 0.03(stat.) ±0.15(syst.) (K0+K―0) per event.
No description provided.
No description provided.
No description provided.