We present a new measurement of the total photoproduction cross section performed with the H1 detector at HERA. For an average centre of mass energy of 200GeV a value of $\sigma_{tot}~{\gamma{p}}= 165\pm2\pm11\mu$b has been obtained. A detailed analysis of the data in adequate kinematic regions enabled a decomposition of the total cross section in its elastic, single diffractive dissociation and remaining non-diffractive parts, based on safe assumptions on the double diffractive dissociation contribution.
No description provided.
Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (x_F) variable for charged particles, the squared transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a function of x_F. These distributions are compared with results in the gamma^* p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q^2 by hard gluons.
Energy flow distributions in the gamma*-pomeron CM frame.. Positive etarap corresponds to the direction of the incoming photon.
Energy flow distributions in the gamma*-pomeron CM frame.. Positive etarap corresponds to the direction of the incoming photon.
Energy flow distributions in the gamma*-pomeron CM frame.. Positive etarap corresponds to the direction of the incoming photon.
The differential cross sections for elastic π − p, K − p , p p and π + p, pp scattering at 39 and 44.5 GeV/ c , respectively, have been measured in the interval of momentum transfer squared 0.15 ≤ ovbt | ≤ 2 (GeV/ c ) 2 .
No description provided.
No description provided.
No description provided.
A study of pp interactions at an incident momentum of 16.2 GeV/ c leading to two-prong non-strange final states was carried out in an exposure of the 2m CERN hydrogen bubble chamber. The c.m. angle and momentum distributions for the outgoing particles in the final states pn π + and pp π 0 are presented and discussed. These final states were analysed in terms of quasi two-body final states - N(Nπ), with the pion-nucleon system in an I = 1 2 or I = 3 2 state. A determination of these two isospin amplitudes and their interference term is then carried out. The reaction pp → pn π + is found to be well described by a Reggeized exchange model, as well as by a double Regge-exchange model.
No description provided.
None
.
.
.
Diffractive scattering of $\gamma~* p \to X + N$, where $N$ is either a proton or a nucleonic system with $M_N<4$GeV has been measured in deep inelastic scattering (DIS) at HERA. The cross section was determined by a novel method as a function of the $\gamma~* p$ c.m. energy $W$ between 60 and 245GeV and of the mass $M_X$ of the system $X$ up to 15GeV at average $Q~2$ values of 14 and 31GeV$~2$. The diffractive cross section $d\sigma~{diff} /dM_X$ is, within errors, found to rise linearly with $W$. Parameterizing the $W$ dependence by the form $d\sigma~{diff}/dM_X \propto (W~2)~{(2\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} -2)}$ the DIS data yield for the pomeron trajectory $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} = 1.23 \pm 0.02(stat) \pm 0.04 (syst)$ averaged over $t$ in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ extracted from soft interactions. The value of $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates from processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton $F~{D(3)}_2(\beta,Q~2, \mbox{$x_{_{I\hspace{-0.2em}P}}$})$ has been determined, where $\beta$ is the momentum fraction of the struck quark in the pomeron. The form $F~{D(3)}_2 = constant \cdot (1/ \mbox{$x_{_{I\hspace{-0.2em}P}}$})~a$ gives a good fit to the data in all $\beta$ and $Q~2$ intervals with $a = 1.46 \pm 0.04 (stat) \pm
No description provided.
No description provided.
No description provided.
The differential cross section for π ± p elastic scattering below 2 GeV/ c has been measured at small forward pion angles by an electronics experiment. The interference effects observed between the Coulomb and the nuclear interaction have been used to determine the magnitude and sign of the real parts of the π ± p forward scattering amplitude. The latter are compared to the values predicted by the dispersion relations.
.
.
.
We have measured the differential cross section for π − p elastic scattering at eight incident momenta, 2.06, 2.26, 2.45, 2.65, 2.86, 3.05, 3.26 and 3.48 GeV/ c , in a wide range of c.m. scattering angle between 15° and 160°. A pronounced dip-bump structure has been found at large angles. Details of the structure are quantitatively described as functions of the incident momentum.
No description provided.
No description provided.
No description provided.
Forward differential cross sections for π − p elastic scattering at 1.0, 1.5 and 2.0 GeV/ c show that the square of the imaginary parts of the nuclear scattering agrees with the optical theorem prediction within ±3%, when averaged over the three momenta.
No description provided.
Polarization and differential cross-section data for elastic scattering of negative kaons on polarized protons between 865 and 1330 MeV/ c are presented. Comparisons are made with predictions given by published energy dependent phase-shift analyses. The Legendre expansion coefficients characterizing the polarization distributions show remarkable structures resulting from excitation of Λ- and Σ-resonances. An analysis of the elastic and charge-exchange data in this region of momenta supports the assignments of J P = 3 2 + for the Λ(1870) resonance. The occurence of zero crossings in the polarization data is discussed.
No description provided.
No description provided.
No description provided.