Measurement of the Underlying Event Activity at the LHC with sqrt(s)= 7 TeV and Comparison with sqrt(s) = 0.9 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 09 (2011) 109, 2011.
Inspire Record 916908 DOI 10.17182/hepdata.57696

A measurement of the underlying activity in scattering processes with a hard scale in the several GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 and 7 TeV, using data collected by the CMS experiment at the LHC. The production of charged particles with pseudorapidity |eta| < 2 and transverse momentum pT > 0.5 GeV/c is studied in the azimuthal region transverse to that of the leading set of charged particles forming a track-jet. A significant growth of the average multiplicity and scalar-pT sum of the particles in the transverse region is observed with increasing pT of the leading track-jet, followed by a much slower rise above a few GeV/c. For track-jet pT larger than a few GeV/c, the activity in the transverse region is approximately doubled with a centre-of-mass energy increase from 0.9 to 7 TeV. Predictions of several QCD-inspired models as implemented in PYTHIA are compared to the data.

15 data tables match query

Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 0.9 TeV.

Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 7 TeV.

Ratio of the fully corrected charged particle multiplicity at 7 TeV to that at 0.9 TeV.

More…

Measurement of four-jet production in proton-proton collisions at sqrt(s)=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 89 (2014) 092010, 2014.
Inspire Record 1273574 DOI 10.17182/hepdata.66510

Measurements of the differential cross sections for the production of exactly four jets in proton-proton collisions are presented as a function of the transverse momentum pt and pseudorapidity eta, together with the correlations in azimuthal angle and the pt balance among the jets. The data sample was collected in 2010 at a center-of-mass energy of 7 TeV with the CMS detector at the LHC, with an integrated luminosity of 36 inverse picobarns. The cross section for a final state with a pair of hard jets with pt > 50 GeV and another pair with pt > 20 GeV within abs(eta) < 4.7 is measured to be sigma = 330 +- 5 (stat.) +- 45 (syst.) nb. It is found that fixed-order matrix element calculations including parton showers describe the measured differential cross sections in some regions of phase space only, and that adding contributions from double parton scattering brings the Monte Carlo predictions closer to the data.

12 data tables match query

The measured fiducial cross section. The first uncertainty is the statistical one, the second uncertainty is the combined systematic uncertainty including luminosity, jet energy scale, model dependence and jet energy resolution and trigger efficiency correction.

Differential cross section as a function of the transverse momentum PT of the leading jet. The first uncertainty is the statistical one, the second uncertainty is the combined systematic uncertainty including luminosity, jet energy scale, model dependence and jet energy resolution and trigger efficiency correction.

Differential cross section as a function of the transverse momentum PT of the subleading jet. The first uncertainty is the statistical one, the second uncertainty is the combined systematic uncertainty including luminosity, jet energy scale, model dependence and jet energy resolution and trigger efficiency correction.

More…

Measurement of the Muon Charge Asymmetry in Inclusive $pp \to W+X$ Production at $\sqrt s =$ 7 TeV and an Improved Determination of Light Parton Distribution Functions

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 90 (2014) 032004, 2014.
Inspire Record 1273570 DOI 10.17182/hepdata.65456

Measurements of the muon charge asymmetry in inclusive pp to WX production at sqrt(s) = 7 TeV are presented. The data sample corresponds to an integrated luminosity of 4.7 inverse femtobarns recorded with the CMS detector at the LHC. With a sample of more than twenty million W to mu nu events, the statistical precision is greatly improved in comparison to previous measurements. These new results provide additional constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10E-3 to 10E-1. These measurements and the recent CMS measurement of associated W + charm production are used together with the cross sections for inclusive deep inelastic ep scattering at HERA in a next-to-leading-order QCD analysis. The determination of the valence quark distributions is improved, and the strange-quark distribution is probed directly through the leading-order process g + s to W + c in proton-proton collisions at the LHC.

4 data tables match query

Summary of the final results for muon charge asymmetry $\mathcal{A}$ with the muon $p_{T}>25$ GeV. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using the FEWZ 3.1 MC tool interfaced with the NLO CT10, NNPDF2.3, HERAPDF1.5, and MSTW2008CPdeut PDF sets. The PDF uncertainty is at 68% C.L. The values are expressed as percentages.

Summary of the final results for muon charge asymmetry $\mathcal{A}$ with the muon $p_{T}>35$ GeV. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using the FEWZ 3.1 MC tool interfaced with the NLO CT10, NNPDF2.3, HERAPDF1.5, and MSTW2008CPdeut PDF sets. The PDF uncertainty is at 68% C.L. The values are expressed as percentages.

Covariance matrix (statistical and systematic uncertainties combined) with the muon $p_{T}>25$ GeV. The units are in $10^{-4}$.

More…

Search for new phenomena in photon+jet events collected in proton--proton collisions at sqrt(s) = 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Lett.B 728 (2014) 562-578, 2014.
Inspire Record 1253852 DOI 10.17182/hepdata.62307

This Letter describes a model-independent search for the production of new resonances in photon + jet events using 20 inverse fb of proton--proton LHC data recorded with the ATLAS detector at a centre-of-mass energy of sqrt(s) = 8 TeV. The photon + jet mass distribution is compared to a background model fit from data; no significant deviation from the background-only hypothesis is found. Limits are set at 95% credibility level on generic Gaussian-shaped signals and two benchmark phenomena beyond the Standard Model: non-thermal quantum black holes and excited quarks. Non-thermal quantum black holes are excluded below masses of 4.6 TeV and excited quarks are excluded below masses of 3.5 TeV.

4 data tables match query

Invariant mass of the photon+jet pair for events passing the final selections. The number of observed events and the fit background estimates are given in each bin, where the fit estimates are rounded to the nearest integer.

The 95% CL upper limits on SIG*BR*A*EPSILON for a hypothetical signal with a Gaussian-shaped M(GAMMA JET) distribution as a function of the signal mass M(G) for four values of the relative width SIGMA(G) / M(G).

Acceptance (A), efficiency (EPSILON), cross-section (SIG) and limits in number of events for the quantum black hole (QBH) benchmark model, as a function of the threshold mass M(th). Uncertainties on the cross section are on the order of 1%. The limits include statistical uncertainties only. Expected limits include the 68% uncertainty band. Acceptance was calculated using parton-level quantities by imposing criteria that apply directly to kinematic selections (photon/jet |eta|, photon/jet transverse momentum, Delta(eta), Delta(R)). All other selections, which in general correspond to event and object quality criteria, were used to calculate the efficiency based on the events included in the acceptance.

More…

Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 06 (2014) 120, 2014.
Inspire Record 1280529 DOI 10.17182/hepdata.64748

The production of a Z boson, decaying into two leptons and produced in association with one or more b jets, is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV. The data were recorded in 2011 with the CMS detector and correspond to an integrated luminosity of 5 inverse femtobarns. The Z(ll) + b-jets cross sections (where ll = mu mu or ee) are measured separately for a Z boson produced with exactly one b jet and with at least two b jets. In addition, a cross section ratio is extracted for a Z boson produced with at least one b jet, relative to a Z boson produced with at least one jet. The measured cross sections are compared to various theoretical predictions, and the data favour the predictions in the five-flavour scheme, where b quarks are assumed massless. The kinematic properties of the reconstructed particles are compared with the predictions from the MADGRAPH event generator using the PYTHIA parton shower simulation.

4 data tables match query

The cross section at the particle level for the production of a Z boson with exactly one b-jet.

The cross section at the particle level for the production of a Z boson with at least two b-jets.

The cross section at the particle level for the production of a Z boson with at least one b-jet.

More…

Inclusive search for a vector-like T quark with charge 2/3 in pp collisions at sqrt(s)=8 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 729 (2014) 149-171, 2014.
Inspire Record 1266766 DOI 10.17182/hepdata.62352

A search is performed for a massive new vector-like quark T, with charge 2/3, that is pair produced together with its antiparticle in proton-proton collisions. The data were collected by the CMS experiment at the Large Hadron Collider in 2012 at sqrt(s) = 8 TeV and correspond to an integrated luminosity of 19.5 inverse femtobarns. The T quark is assumed to decay into three different final states, bW, tZ, and tH. The search is carried out using events with at least one isolated lepton. No deviations from standard model expectations are observed, and lower limits are set on the T quark mass at 95% confidence level. The lower limit lies between 687 and 782 GeV for all possible values of the branching fractions into the three different final states assuming strong production. These limits are the most stringent constraints to date on the existence of such a quark.

3 data tables match query

Number of events predicted for background processes and observed in the single-lepton sample. The uncertainty in the total background expectation is computed including the correlations between the systematic uncertainties of the individual contributions.

Number of events predicted for background processes and observed in the opposite-sign dilepton samples with two or three jets (OS1) and with at least 5 jets (OS2), the same-sign dilepton sample (SS), and the trilepton sample. An entry "-" means that the background source is not applicable to the channel.

Lower limits for the T quark mass, at 95% CL, for different combinations of T quark branching fractions.


Measurement of the Y1S, Y2S and Y3S polarizations in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 110 (2013) 081802, 2013.
Inspire Record 1185414 DOI 10.17182/hepdata.60126

The polarizations of the Y(1S), Y(2S), and Y(3S) mesons are measured in proton-proton collisions at sqrt(s) = 7 TeV, using a data sample of Y(nS) to oppositely charged muon pair decays collected by the CMS experiment, corresponding to an integrated luminosity of 4.9 inverse femtobarns. The dimuon decay angular distributions are analyzed in three different polarization frames. The polarization parameters lambda[theta], lambda[phi], and lambda[theta,phi], as well as the frame-invariant quantity lambda-tilde, are presented as a function of the Y(nS) transverse momentum between 10 and 50 GeV, in the rapidity ranges abs(y) < 0.6 and 0.6 < abs(y) < 1.2. No evidence of large transverse or longitudinal polarizations has been seen in the explored kinematic region.

75 data tables match query

Distribution of Lambda-Theta in the CS frame for Y(1S) production in the |y| range 0.0-0.6.

Distribution of Lambda-Theta in the CS frame for Y(1S) production in the |y| range 0.6-1.2.

Distribution of Lambda-Phi in the CS frame for Y(1S) production in the |y| range 0.0-0.6.

More…

Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at sqrt(s) = 7 TeV and first determination of the strong coupling constant in the TeV range

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 73 (2013) 2604, 2013.
Inspire Record 1230937 DOI 10.17182/hepdata.62093

A measurement is presented of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section as a function of the average transverse momentum, <pT[1,2]>, of the two leading jets in the event. The data sample was collected during 2011 at a proton-proton centre-of-mass energy of 7 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 5.0 inverse femtobarns. The strong coupling constant at the scale of the Z boson mass is determined to be alphaS[MZ] = 0.1148 +/- 0.0014 (exp.) +/- 0.0018 (PDF) +/- 0.0050 (theory), by comparing the ratio in the range 0.42 < <pT[1,2]> < 1.39 TeV to the predictions of perturbative QCD at next-to-leading order. This is the first determination of alphaS[MZ] from measurements at momentum scales beyond 0.6 TeV. The predicted ratio depends only indirectly on the evolution of the parton distribution functions of the proton such that this measurement also serves as a test of the evolution of the strong coupling constant. No deviation from the expected behaviour is observed.

3 data tables match query

Measurements of the ratio of 3jet to 2jet production as a function of the mean transverse momentum of the two leading jets. The errors in the tables are statistical only with the systematic errors quoted at the top of the table. The individual sources contributing to these systematic errors are shown in the following two tables. The statistcal correlations of the measured ratios between PT bins is given in the link above.

The different contributions to the Jet Energy Scale (JES) uncertainties as described in the CMS paper Phys.Rev.D87(2013)112002. The overall JES uncertainty (quadratic sum) from these is 1.245 %.

The different contributions to the unfolding procedure uncertainties as described in this paper. The overall unfolding uncertainty (quadratic sum) from these is 0.641 %.


Study of the Underlying Event at Forward Rapidity in pp Collisions at $\sqrt{s}$ = 0.9, 2.76, and 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 04 (2013) 072, 2013.
Inspire Record 1218372 DOI 10.17182/hepdata.66750

The underlying event activity in proton-proton collisions at forward pseudorapidity (-6.6 < eta < -5.2) is studied with the CMS detector at the LHC, using a novel observable: the ratio of the forward energy density, dE/d(eta), for events with a charged-particle jet produced at central pseudorapidity (abs(eta[jet]) < 2) to the forward energy density for inclusive events. This forward energy density ratio is measured as a function of the central jet transverse momentum, pt, at three different pp centre-of-mass energies (sqrt(s) = 0.9, 2.76, and 7 TeV). In addition, the sqrt(s) evolution of the forward energy density is studied in inclusive events and in events with a central jet. The results are compared to those of Monte Carlo event generators for pp collisions and are discussed in terms of the underlying event. Whereas the dependence of the forward energy density ratio on jet pt at each sqrt(s) separately can be well reproduced by some models, all models fail to simultaneously describe the increase of the forward energy density with sqrt(s) in both inclusive events and in events with a central jet.

1 data table match query

Ratio of the energy deposited in the pseudorapidity range $-6.6 < \eta < -5.2$ for events with a charged-particle jet with $|\eta^\text{jet}| < 2$ with respect to the energy in inclusive events, as a function of the jet transverse momentum $p_{\rm T}$ for $\sqrt{s} =$ 0.9, 2.76 , and 7 TeV. Data are taken from the Rivet Analysis.


Measurement of the t t-bar production cross section in pp collisions at sqrt(s) = 7 TeV with lepton + jets final states

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 720 (2013) 83-104, 2013.
Inspire Record 1208913 DOI 10.17182/hepdata.66907

A measurement of the t t-bar production cross section in pp collisions at sqrt(s) = 7 TeV is presented. The results are based on data corresponding to an integrated luminosity of 2.3 inverse femtobarns collected by the CMS detector at the LHC. Selected events are required to have one isolated, high transverse momentum electron or muon, large missing transverse energy, and hadronic jets, at least one of which must be consistent with having originated from a b quark. The measured cross section is 158.1 +/- 2.1 (stat.) +/- 10.2 (syst.) +/- 3.5 (lum.) pb, in agreement with standard model predictions.

3 data tables match query

Measured cross section for t-tbar production for the combined result as well as the electron+jets and muon+jets channels separately.

Results of the fit to the combined electron + jets and muon + jets sample, and each channel individually. The contributions from the background processes are quoted as scale factors with respect to their theoretical predictions. The scale factors do not account for a full treatment of the systematic uncertainties and are strictly valid only in the context of the fit. For brevity, the QCD parameters are not shown.

Correlation matrix of the combined fit to the electron + jets plus muon + jets samples. Only non-QCD parameters are shown.