Date

Version 2
Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 124 (2020) 202001, 2020.
Inspire Record 1764472 DOI 10.17182/hepdata.93067

A measurement is reported of the jet mass distribution in hadronic decays of boosted top quarks produced in pp collisions at $\sqrt{s} =$ 13 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed in the lepton+jets channel of $\mathrm{t\bar{t}}$ events, where the lepton is an electron or muon. The products of the hadronic top quark decay t $\to$ bW $\to$ bq$\mathrm{\bar{q}}'$ are reconstructed as a single jet with transverse momentum larger than 400 GeV. The $\mathrm{t\bar{t}}$ cross section as a function of the jet mass is unfolded at the particle level and used to extract a value of the top quark mass of 172.6 $\pm$ 2.5 GeV. A novel jet reconstruction technique is used for the first time at the LHC, which improves the precision by a factor of three relative to an earlier measurement. This highlights the potential of measurements using boosted top quarks, where the new technique will enable future precision measurements.

8 data tables

The particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.

The normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.

The covariance matrix containing the statistical uncertainties of Figure 2a is shown.

More…

Studies of charm quark diffusion inside jets using PbPb and pp collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 102001, 2020.
Inspire Record 1763389 DOI 10.17182/hepdata.88286

The first study of charm quark diffusion with respect to the jet axis in heavy ion collisions is presented. The measurement is performed using jets with $p_\mathrm{T}^\mathrm{jet}$$>$ 60 GeV and D$^0$ mesons with $p_\mathrm{T}^\mathrm{D}$$>$ 4 GeV in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV, recorded by the CMS detector at the LHC. The radial distribution of D$^0$ mesons with respect to the jet axis is sensitive to the production mechanisms of the meson, as well as to the energy loss and diffusion processes undergone by its parent parton inside the strongly interacting medium produced in PbPb collisions. When compared to Monte Carlo event generators, the radial distribution in pp collisions is found to be well-described by PYTHIA, while the slope of the distribution predicted by SHERPA is steeper than that of the data. In PbPb collisions, compared to the pp results, the D$^0$ meson distribution for 4 $<$$p_\mathrm{T}^\mathrm{D}$$<$ 20 GeV hints at a larger distance on average with respect to the jet axis, reflecting a diffusion of charm quarks in the medium created in heavy ion collisions. At higher $p_\mathrm{T}^\mathrm{D}$, the PbPb and pp radial distributions are found to be similar.

2 data tables

Distribution of $\mathrm{D^{0}}$ mesons in jets, as a function of the distance from the jet axis ($r$) for $4 < p_{\mathrm{T}^{\mathrm{D}}} < 20 \mathrm{GeV/}c$ measured in pp and PbPb collisions at 5.02 TeV.

Distribution of $\mathrm{D^{0}}$ mesons in jets, as a function of the distance from the jet axis ($r$) for $p_{\mathrm{T}^{\mathrm{D}}} > 20 \mathrm{GeV/}c$ measured in pp and PbPb collisions at 5.02 TeV.


Search for top squark pair production in a final state with two tau leptons in proton-proton collisions at $ \sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2020) 015, 2020.
Inspire Record 1762677 DOI 10.17182/hepdata.90833

A search for pair production of the supersymmetric partner of the top quark, the top squark, in proton-proton collision events at $ \sqrt{s} =$ 13 TeV is presented in a final state containing hadronically decaying tau leptons and large missing transverse momentum. This final state is highly sensitive to high-$\tan{\beta}$ or higgsino-like scenarios in which decays of electroweak gauginos to tau leptons are dominant. The search uses a data set corresponding to an integrated luminosity of 77.2 fb$^{-1}$, which was recorded with the CMS detector during 2016 and 2017. No significant excess is observed with respect to the background prediction. Exclusion limits at 95% confidence level are presented in the top squark and lightest neutralino mass plane within the framework of simplified models, in which top squark masses up to 1100 GeV are excluded for a nearly massless neutralino.

29 data tables

Values of the predicted SM background events from various sources and observed events in each of the 15 signal regions.

Values of the predicted signal yields in each of the 15 signal regions (for $ x=0.25 $).

Values of the predicted signal yields in each of the 15 signal regions (for $ x=0.5 $).

More…

Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2020) 065, 2020.
Inspire Record 1761088 DOI 10.17182/hepdata.90685

A search is performed for a pseudoscalar Higgs boson, A, decaying into a 125 GeV Higgs boson h and a Z boson. The h boson is specifically targeted in its decay into a pair of tau leptons, while the Z boson decays into a pair of electrons or muons. A data sample of proton-proton collisions collected by the CMS experiment at the LHC at $\sqrt{s} =$ 13 TeV is used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No excess above the standard model background expectations is observed in data. A model-independent upper limit is set on the product of the gluon fusion production cross section for the A boson and the branching fraction to Zh$\to\ell\ell\tau\tau$. The observed upper limit at 95% confidence level ranges from 27 to 5 fb for A boson masses from 220 to 400 GeV, respectively. The results are used to constrain the extended Higgs sector parameters for two benchmark scenarios of the minimal supersymmetric standard model.

1 data table

The expected and observed 95% CL model-independent upper limits on the product of the cross section and branching fraction for the A boson (pseudoscalar Higgs boson).


Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 534, 2020.
Inspire Record 1759853 DOI 10.17182/hepdata.88289

Anisotropies in the initial energy density distribution of the quark-gluon plasma created in high energy heavy ion collisions lead to anisotropies in the azimuthal distributions of the final-state particles known as collective flow. Fourier harmonic decomposition is used to quantify these anisotropies. The higher-order harmonics can be induced by the same order anisotropies (linear response) or by the combined influence of several lower order anisotropies (nonlinear response) in the initial state. The mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles are measured as functions of transverse momentum and centrality in PbPb collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV with the CMS detector. The results are compared with viscous hydrodynamic calculations using several different initial conditions, as well as microscopic transport model calculations. None of the models provides a simultaneous description of the mixed higher-order flow harmonics and nonlinear response coefficients.

90 data tables

Mixed higher-order flow harmonic $v_4\{\Psi_{22}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

Mixed higher-order flow harmonic $v_5\{\Psi_{23}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

Mixed higher-order flow harmonic $v_6\{\Psi_{222}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

More…

Bose-Einstein correlations of charged hadrons in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2020) 014, 2020.
Inspire Record 1759872 DOI 10.17182/hepdata.106132

Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at $\sqrt{s} =$ 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at $\sqrt{s} =$ 7 TeV, as well as with theoretical predictions.

12 data tables

The Rinv fit parameters as a function of particle-level multiplicities using the HCS method in pp collisions at 13 TeV.

The Rinv fit parameters as a function of particle-level multiplicities (for p_T^trk>0.1GeV) using the HCS method in pp collisions at 13 TeV.

The Rinv fit parameters as a function of kT using the HCS method in pp collisions at 13 TeV.

More…

Version 2
Strange hadron production in pp and pPb collisions at $\sqrt{s_\mathrm{NN}}= $ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 101 (2020) 064906, 2020.
Inspire Record 1758692 DOI 10.17182/hepdata.88283

The transverse momentum ($p_\mathrm{T}$) distributions of $\Lambda$, $\Xi^-$, and $\Omega^-$ baryons, their antiparticles, and K$^0_\mathrm{S}$ mesons are measured in proton-proton (pp) and proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV over a broad rapidity range. The data, corresponding to integrated luminosities of 40.2 nb$^{-1}$ and 15.6 $\mu$b$^{-1}$ for pp and pPb collisions, respectively, were collected by the CMS experiment. The nuclear modification factor $R_\mathrm{pPb}$, defined as the ratio of the particle yield in pPb collisions and a scaled pp reference, is measured for each particle. A strong dependence on particle species is observed in the $p_\mathrm{T}$ range from 2 to 7 GeV, where $R_\mathrm{pPb}$ for K$^0_\mathrm{S}$ is consistent with unity, while an enhancement ordered by strangeness content and/or particle mass is observed for the three baryons. In pPb collisions, the strange hadron production is asymmetric about the nucleon-nucleon center-of-mass rapidity. Enhancements, which depend on the particle type, are observed in the direction of the Pb beam. The results are compared to predictions from EPOS LHC, which includes parametrized radial flow. The model is in qualitative agreement with the $R_\mathrm{pPb}$ data, but fails to describe the dependence on particle species in the yield asymmetries measured away from mid-rapidity in pPb collisions.

25 data tables

Invariant $p_{T}$-differential spectra of ${K_{0}}^{S}$ in p+p and p+Pb at $\sqrt{s}$=5.02 TeV in various $y_{CM}$ ranges

Invariant $p_{T}$-differential spectra of $\Lambda + \bar{\Lambda}$ in p+p and p+Pb at $\sqrt{s}$=5.02 TeV in various $y_{CM}$ ranges

Invariant $p_{T}$-differential spectra of $\Xi- + \bar{\Xi+}$ in p+p and p+Pb at $\sqrt{s}$=5.02 TeV in various $y_{CM}$ ranges

More…

Study of J/$\psi$ meson production from jet fragmentation in pp collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 804 (2020) 135409, 2020.
Inspire Record 1757506 DOI 10.17182/hepdata.90639

A study of the production of prompt J/$\psi$ mesons contained in jets in proton-proton collisions at $\sqrt{s} =$ 8 TeV is presented. The analysis is based on data corresponding to an integrated luminosity of 19.1 fb$^{-1}$ collected with the CMS detector at the LHC. For events with at least one observed jet, the angular separation between the J/$\psi$ meson and the jet is used to test whether the J/$\psi$ meson is part of the jet. The analysis shows that most prompt J/$\psi$ mesons with energy above 15 GeV and rapidity $|y|<$ 1 are contained in jets with pseudorapidity $|\eta_{\text{jet}}|$ $<$ 1. The differential distributions of the probability to have a J/$\psi$ meson contained in a jet as a function of jet energy for a fixed J/$\psi$ energy fraction are compared to a theoretical model using the fragmenting jet function approach. The data agree best with fragmenting jet function calculations that use a long-distance matrix element parameter set in which prompt J/$\psi$ mesons are predicted to be unpolarized. This technique demonstrates a new way to test predictions for prompt J/$\psi$ production using nonrelativistic quantum chromodynamics.

6 data tables

Experimental Xi values and FJF predictions for the four NRQCD terms using BCKL LDME parameters

Experimental Xi values and FJF predictions for the four NRQCD terms using BK LDME parameters

Experimental Xi values and FJF predictions for the four NRQCD terms using BCKL LDME parameters

More…

Evidence for WW production from double-parton interactions in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 41, 2020.
Inspire Record 1753976 DOI 10.17182/hepdata.90950

A search for WW production from double-parton scattering processes using same-charge electron-muon and dimuon events is reported, based on proton-proton collision data collected at a center-of-mass energy of 13 TeV. The analyzed data set corresponds to an integrated luminosity of 77.4 fb$^{-1}$, collected using the CMS detector at the LHC in 2016 and 2017. Multivariate classifiers are used to discriminate between the signal and the dominant background processes. A maximum likelihood fit is performed to extract the signal cross section. This leads to the first evidence for WW production via double-parton scattering, with a significance of 3.9 standard deviations. The measured inclusive cross section is 1.41 $\pm$ 0.28 (stat) $\pm$ 0.28 (syst) pb.

1 data table

Observed value for inclusive same-sign WW production via DPS


Version 2
Measurement of the $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ production cross section in the all-jet final state in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 803 (2020) 135285, 2020.
Inspire Record 1753720 DOI 10.17182/hepdata.91630

A measurement of the production cross section of top quark pairs in association with two b jets ($\mathrm{t\bar{t}}\mathrm{b\bar{b}}$) is presented using data collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS detector at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The cross section is measured in the all-jet decay channel of the top quark pair by selecting events containing at least eight jets, of which at least two are identified as originating from the hadronization of b quarks. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The cross section is determined for the total phase space to be 5.5 $\pm$ 0.3 (stat)${}^{+1.6}_{-1.3}$ (syst) pb and also measured for two fiducial $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ definitions. The measured cross sections are found to be larger than theoretical predictions by a factor of 1.5-2.4, corresponding to 1-2 standard deviations.

1 data table

The measured cross sections. The first uncertainty is statistical, the second uncertianty is the systematic.