Light Nuclei Collectivity from $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au Collisions at RHIC

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 827 (2022) 136941, 2022.
Inspire Record 1986611 DOI 10.17182/hepdata.115569

In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, $v_1$ and $v_2$, of light nuclei ($d$, $t$, $^{3}$He, $^{4}$He) produced in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured $v_1$ slopes of light nuclei at mid-rapidity. For the measured $v_2$ magnitude, a strong rapidity dependence is observed. Unlike $v_2$ at higher collision energies, the $v_2$ values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.

22 data tables

The rapidity and $p_{T}$ dependencies of $v_{1}$ for $p$ in 10-40% mid-central Au+Au collisions at 3 GeV.

The rapidity and $p_{T}$ dependencies of $v_{1}$ for $d$ in 10-40% mid-central Au+Au collisions at 3 GeV.

The $p_{T}$ dependencies of $v_{1}$ within $-0.1<y<0$ for $t$ in 10-40% mid-central Au+Au collisions at 3 GeV.

More…

Bulk Properties of the System Formed in Au+Au Collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 101 (2020) 024905, 2020.
Inspire Record 1748776 DOI 10.17182/hepdata.103857

We report systematic measurements of bulk properties of the system created in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).The transverse momentum spectra of $\pi^{\pm}$, $K^{\pm}$ and $p(\bar{p})$ are studied at mid-rapidity ($|y| < 0.1$) for nine centrality intervals. The centrality, transverse momentum ($p_T$),and pseudorapidity ($\eta$) dependence of inclusive charged particle elliptic flow ($v_2$), and rapidity-odd charged particles directed flow ($v_{1}$) results near mid-rapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. The results at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5 GeV energy fills the gap in $\mu_B$, which is of the order of 100 MeV,between $\sqrt{s_{\mathrm{NN}}}$ =11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general.

42 data tables

The $p_{T}$ spectra of proton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicated in the legend

The $p_{T}$ spectra of antiproton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend

The $p_{T}$ spectra of $\pi^{+}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend

More…

Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.C 87 (2013) 014902, 2013.
Inspire Record 1107659 DOI 10.17182/hepdata.58994

The anisotropy of the azimuthal distributions of charged particles produced in PbPb collisions with a nucleon-nucleon center-of-mass energy of 2.76 TeV is studied with the CMS experiment at the LHC. The elliptic anisotropy parameter defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee--Yang zeros. The anisotropy is presented as a function of transverse momentum (pt), pseudorapidity (eta) over a broad kinematic range: 0.3 < pt < 20 GeV, abs(eta) < 2.4, and in 12 classes of collision centrality from 0 to 80%. The results are compared to those obtained at lower center-of-mass energies, and various scaling behaviors are examined. When scaled by the geometric eccentricity of the collision zone, the elliptic anisotropy is found to obey a universal scaling with the transverse particle density for different collision systems and center-of-mass energies.

92 data tables

Measurements of the elliptic anisotropy parameter using the event-plane method, V2(EP) v PT for the centrality range 0-5%.

Measurements of the elliptic anisotropy parameter using the event-plane method, V2(EP) v PT for the centrality range 5-10%.

Measurements of the elliptic anisotropy parameter using the event-plane method, V2(EP) v PT for the centrality range 10-15%.

More…