Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at $\sqrt{s}=13$ TeV and p$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV. The correlation functions are measured as a function of relative azimuthal angle $\Delta\varphi$ and pseudorapidity separation $\Delta\eta$ for pairs of primary charged particles within the pseudorapidity interval $|\eta| < 0.9$ and the transverse-momentum interval $1 < p_{\rm T} < 4$ GeV/$c$. Flow coefficients are extracted for the long-range correlations ($1.6 < |\Delta\eta| <1.8$) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events.
High and low multiplicity long-range delta phi correlations
Jet fragmentation yields of near and away side as a function of multiplicity class and and the ratio of them, please see the definition of x-axis
The second and third harmonic coefficients as a function of transverse momentum in pp and p--Pb collisions.
The Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\mathrm{NN}}}=$ 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic ($v_{2}$) and triangular ($v_{3}$) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope $r_{3}^{\rm Norm}$ is found to be larger than zero and to have a magnitude similar to $r_{2}^{\rm Norm}$, thus pointing to a large background contribution for these measurements. Furthermore, $r_{2}^{\rm Norm}$ can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW ($f_{\rm CMW}$) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for $f_{\rm CMW}$, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level.
Normalized $\Delta\it{v}_{2}$ slope of charged hadrons as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.
Normalized $\Delta\it{v}_{2}$ slope of kaons as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.
Normalized $\Delta\it{v}_{2}$ slope of pions as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.
We present systematic measurements of azimuthal anisotropy for strange and multistrange hadrons ($K^{0}_{s}$, $\Lambda$, $\Xi$, and $\Omega$) and $\phi$ mesons at midrapidity ($|y| <$ 1.0) in collisions of U + U nuclei at $\sqrt{s_{NN}} = 193$ GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. Transverse momentum ($p_{\text{T}}$) dependence of flow coefficients ($v_{2}$, $v_{3}$, and $v_{4}$) is presented for minimum bias collisions and three different centrality intervals. Number of constituent quark scaling of the measured flow coefficients in U + U collisions is discussed. We also present the ratio of $v_{n}$ scaled by the participant eccentricity ($\varepsilon_{n}\left\lbrace 2 \right\rbrace$) to explore system size dependence and collectivity in U + U collisions. The magnitude of $v_{2}/\varepsilon_{2}$ is found to be smaller in U + U collisions than that in central Au + Au collisions contradicting naive eccentricity scaling. Furthermore, the ratios between various flow harmonics ($v_{3}/v_{2}^{3/2}$, $v_{4}/v_{2}^{4/2}$) are studied and compared with hydrodynamic and transport model calculations.
Event plane resolution as a function of centrality for $\psi_{2}$, $\psi_{3}$, and $\psi_{4}$ in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The statistical uncertainties are smaller than the markers.
The $p_{\text{T}}$ dependence of $v_{n}$ coefficients at mid-rapidity ($|y| <$ 1) in minimum bias U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.
The $p_{\text{T}}$ dependence of $v_{n}$ coefficients at mid-rapidity ($|y| <$ 1) in minimum bias U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.
The measurements of the (anti)deuterons elliptic flow ($v_2$) and the first measurements of triangular flow ($v_3$) in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon collisions $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV are presented. A mass ordering at low transverse momentum ($p_{\rm T}$) is observed when comparing these measurements with those of other identified hadrons, as expected from relativistic hydrodynamics. The measured (anti)deuterons $v_2$ lies between the predictions from the simple coalescence and blast-wave models, which provide a good description of the data only for more peripheral and for more central collisions, respectively. The mass number scaling, which is violated for $v_2$, is approximately valid for the (anti)deuterons $v_3$. The measured $v_2$ and $v_3$ are also compared with the predictions from a coalescence approach with phase-space distributions of nucleons generated by iEBE-VISHNU with AMPT initial conditions coupled with UrQMD, and from a dynamical model based on relativistic hydrodynamics coupled to the hadronic afterburner SMASH. The model predictions are consistent with the data within the uncertainties in mid-central collisions, while a deviation is observed in central centrality intervals.
v2 as a function of pT for Pb-Pb collisions at \sqrt{s_NN} = 5.02 TeV and centrality 0-5%.
v2 as a function of pT for Pb-Pb collisions at \sqrt{s_NN} = 5.02 TeV and centrality 5-10%.
v2 as a function of pT for Pb-Pb collisions at \sqrt{s_NN} = 5.02 TeV and centrality 10-20%.
The elliptic flow of electrons from beauty hadron decays at midrapidity ($|y|$$<$ 0.8) is measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ALICE detector at the LHC. The azimuthal distribution of the particles produced in the collisions can be parameterized with a Fourier expansion, in which the second harmonic coefficient represents the elliptic flow, $v_{\rm 2}$. The $v_{\rm 2}$ coefficient of electrons from beauty-hadron decays is measured for the first time in the transverse momentum ($p_{\rm{T}}$) range 1.3-6 GeV/$c$ in the centrality class 30-50%. The measurement of electrons from beauty-hadron decays exploits their larger mean proper decay length $c\tau \approx$ 500 $\mu$m compared to that of charm hadrons and most of the other background sources. The $v_{\rm 2}$ of electrons from beauty hadron decays at midrapidity is found to be positive with a significance of 3.75$\sigma$. The results provide insights on the degree of thermalization of beauty quarks in the medium. A model assuming full thermalization of beauty quarks is strongly disfavoured by the measurement at high $p_{\rm{T}}$, but is in agreement with the results at low $p_{\rm{T}}$. Transport models including substantial interactions of beauty quarks with an expanding strongly-interacting medium describe the measurement.
$v_{2}$ of electrons from beauty hadron decays as a function of $p_{\rm T}$ in the centrality range 30-50% for $\sqrt{s_{\rm NN}}=5.02 {\rm~TeV}$
Anisotropic flow coefficients, $v_n$, non-linear flow mode coefficients, $\chi_{n,mk}$, and correlations among different symmetry planes, $\rho_{n,mk}$ are measured in Pb-Pb collisions at $\sqrt{s_\rm{NN}}=5.02$ TeV. Results obtained with multi-particle correlations are reported for the transverse momentum interval $0.2
Centrality dependence of flow harmonics from $v_2$ to $v_9$.
Centrality dependence of flow harmonics from $v_2$ to $v_9$.
Centrality dependence of flow harmonics from $v_2$ to $v_9$.
Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions -- the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in $p$+Au and $d$+Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data.
The $\gamma_{OS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
The $\gamma_{SS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
The $\gamma_{OS}$ correlators in d+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
We present results for the measurement of $\phi$ meson production via its charged kaon decay channel $\phi \to K^+K^-$ in Au+Au collisions at $\sqrt{s_{_{NN}}}=62.4$, 130, 200 GeV, and in p+p and d+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV from the STAR experiment at RHIC. The mid-rapidity ($|y|<0.5$) $\phi$ meson spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the spectra from p+p, d+Au and peripheral Au+Au collisions show power-law tails at intermediate and high transverse momenta ($p_{T}$) and are described better by Levy distributions. The constant $\phi/K^-$ yield ratio vs. beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for $\phi$ production at RHIC. The $\Omega/\phi$ yield ratio as a function of $p_{T}$ is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/c, but disagrees at higher transverse momenta. The measured nuclear modification factor, $R_{dAu}$, for the $\phi$ meson increases above unity at intermediate $p_{T}$, similar to that for pions and protons, while $R_{AA}$ is suppressed due to jet quenching in central Au+Au collisions. Number of constituent quark scaling of both $R_{cp}$ and $v_{2}$ for the $\phi$ meson with respect to other hadrons in Au+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV at intermediate $p_{T}$ is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate $p_{T}$ region at RHIC.
Background-subtracted invariant mass distributions at 0.4 < $p_{T}$ < 0.8 GeV/c in d + Au 200 GeV collisions (0–100%) with (solid points) and without (open points) the $\delta$-dipangle cut. The dashed curves show a Breit-Wigner (see the text for details) + linear background function fit to the case with the $\delta$-dip-angle cut.
Background-subtracted invariant mass distributions at 0.4 < $p_{T}$ < 0.8 GeV/c in d + Au 200 GeV collisions (0–100%) with (solid points) and without (open points) the $\delta$-dipangle cut. The dashed curves show a Breit-Wigner (see the text for details) + linear background function fit to the case with the $\delta$-dip-angle cut.
Upper panels: same-event (full points) and mixed-event (solid line) $K^{+}K^{-}$ invariant mass distributions at 0.6 < $p_{T}$ < 1.4 GeV/c in p + p 200 GeV collisions (a), 0.8 < $p_{T}$ < 1.2 GeV/c in Au + Au 62.4 GeV collisions (60–80%) (c), and 0.8 < $p_{T}$ < 1.2 GeV/c in Au + Au 200 GeV collisions (0–10%) (e). Lower panels: the corresponding $\phi$ meson mass peaks after subtracting the background. Dashed curves show a Breit-Wigner + linear background function fit in (b), (d). In (f), both linear and quadratic backgrounds are shown as dashed and dot-dashed lines, respectively.
The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.
Directed flow of charged hadrons v1{3} as a function of pseudorapidity for 10–70% centrality.
Directed flow of charged hadrons v1 {EP1,EP2} as a function of pseudorapidity for 20–60% centrality.
Charged hadron v2 for the centrality bins 5 to 10% and in steps of 10% starting at 10, 20, 30, 40, 50, 60, and 70 up to 80% along with min. bias as a function of p_T.
We report first results on elliptic flow of identified particles at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV using the STAR TPC at RHIC. The elliptic flow as a function of transverse momentum and centrality differs significantly for particles of different masses. This dependence can be accounted for in hydrodynamic models, indicating that the system created shows a behavior consistent with collective hydrodynamical flow. The fit to the data with a simple model gives information on the temperature and flow velocities at freeze-out.
Differential elliptic flow for pions for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.
Differential elliptic flow for protons + antiprotons for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.
Differential elliptic flow for kaons for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.