Search for a new scalar decaying into new spin-1 bosons in four-lepton final states with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 865 (2025) 139472, 2025.
Inspire Record 2842018 DOI 10.17182/hepdata.145171

A search is conducted for a new scalar boson $S$, with a mass distinct from that of the Higgs boson, decaying into four leptons ($\ell =$$e$, $\mu$) via an intermediate state containing two on-shell, promptly decaying new spin-1 bosons $Z_\text{d}$: $S \rightarrow Z_\text{d}Z_\text{d} \rightarrow 4\ell$, where the $Z_\text{d}$ boson has a mass between 15 and 300 GeV, and the $S$ boson has a mass between either 30 and 115 GeV or 130 and 800 GeV. The search uses proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider with an integrated luminosity of 139 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s}=13$ TeV. No significant excess above the Standard Model background expectation is observed. Upper limits at 95% confidence level are set on the production cross-section times branching ratio, $\sigma(gg \to S) \times \mathcal{B}(S\rightarrow Z_\text{d}Z_\text{d} \rightarrow 4\ell)$, as a function of the mass of both particles, $m_S$ and $m_{Z\text{d}}$.

0 data tables match query

Search for pair production of boosted Higgs bosons via vector-boson fusion in the $b\bar{b}b\bar{b}$ final state using $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Lett.B 858 (2024) 139007, 2024.
Inspire Record 2781483 DOI 10.17182/hepdata.150977

A search for Higgs boson pair production via vector-boson fusion is performed in the Lorentz-boosted regime, where a Higgs boson candidate is reconstructed as a single large-radius jet, using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. Only Higgs boson decays into bottom quark pairs are considered. The search is particularly sensitive to the quartic coupling between two vector bosons and two Higgs bosons relative to its Standard Model prediction, $\kappa_{2V}$. This study constrains $\kappa_{2V}$ to $0.55 < \kappa_{2V} < 1.49$ at 95% confidence level. The value $\kappa_{2V} = 0$ is excluded with a significance of 3.8 standard deviations with other Higgs boson couplings fixed to their Standard Model values. A search for new heavy spin-0 resonances that would mediate Higgs boson pair production via vector-boson fusion is carried out in the mass range of 1-5 TeV for the first time under several model and decay-width assumptions. No significant deviation from the Standard Model hypothesis is observed and exclusion limits at 95% confidence level are derived.

0 data tables match query

DeepMET: Improving missing transverse momentum estimation with a deep neural network

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-JME-24-001, 2025.
Inspire Record 2969550 DOI 10.17182/hepdata.159179

At hadron colliders, the net transverse momentum of particles that do not interact with the detector (missing transverse momentum, $\vec{p}_\mathrm{T}^\text{miss}$) is a crucial observable in many analyses. In the standard model, $\vec{p}_\mathrm{T}^\text{miss}$ originates from neutrinos. Many beyond-the-standard-model particles, such as dark matter candidates, are also expected to leave the experimental apparatus undetected. This paper presents a novel $\vec{p}_\mathrm{T}^\text{miss}$ estimator, DeepMET, which is based on deep neural networks that were developed by the CMS Collaboration at the LHC. The DeepMET algorithm produces a weight for each reconstructed particle based on its properties. The estimator is based on the negative vector sum of the weighted transverse momenta of all reconstructed particles in an event. Compared with other estimators currently employed by CMS, DeepMET improves the $\vec{p}_\mathrm{T}^\text{miss}$ resolution by 10$-$30%, shows improvement for a wide range of final states, is easier to train, and is more resilient against the effects of additional proton-proton interactions accompanying the collision of interest.

0 data tables match query

Version 2
Search for Higgs boson decays into a $Z$ boson and a light hadronically decaying resonance in 140 fb$^{-1}$ of 13 TeV $p$$p$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Lett.B 868 (2025) 139671, 2025.
Inspire Record 2851948 DOI 10.17182/hepdata.153859

A search for decays of the Higgs boson into a $Z$ boson and a light resonance, with a mass of 0.5-3.5 GeV, is performed using the full 140 fb$^{-1}$ dataset of 13 TeV proton-proton collisions recorded by the ATLAS detector during Run 2 of the LHC. Leptonic decays of the $Z$ boson and hadronic decays of the light resonance are considered. The resonance can be interpreted as a $J/ψ$ or $η_c$ meson, an axion-like particle, or a light pseudoscalar in two-Higgs-doublet models. Due to its low mass, it would be produced with high boost and reconstructed as a single small-radius jet of hadrons. A neural network is used to correct the Monte Carlo simulation of the background in a data-driven way. Two additional neural networks are used to distinguish signal from background. A binned profile-likelihood fit is performed on the final-state invariant mass distribution. No significant excess of events relative to the expected background is observed, and upper limits at 95% confidence level are set on the Higgs boson's branching fraction to a $Z$ boson and a light resonance. The exclusion limit is ~10% for the lower masses, and increases for higher masses. Upper limits on the effective coupling $C^\text{eff}_{ZH}/Λ$ of an axion-like particle to a Higgs boson and $Z$ boson are also set at 95% confidence level, and range from 0.9 to 2 TeV$^{-1}$.

0 data tables match query

Search for a Higgs boson produced in association with a charm quark and decaying to a W boson pair in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-HIG-24-009, 2025.
Inspire Record 2963183 DOI 10.17182/hepdata.161462

This paper presents a search for a Higgs boson produced in association with a charm quark (cH) which allows to probe the Higgs-charm Yukawa coupling strength modifier $κ_\mathrm{c}$. Higgs boson decays to a pair of W bosons are considered, where one W boson decays to an electron and a neutrino, and the other \PW boson decays to a muon and a neutrino. The data, corresponding to an integrated luminosity of 138 fb$^{-1}$, were collected between 2016 and 2018 with the CMS detector at the LHC at a center-of-mass energy of $\sqrt{s}$ = 13 TeV. Upper limits at the 95% confidence level (CL) are set on the ratio of the measured yield to the standard model expectation for cH production. The observed (expected) upper limit is 1065 (506). When combined with the previous search for cH in the diphoton decay channel of the Higgs boson, the limits are interpreted as observed (expected) constraints at 95% CL on the value of $κ_\mathrm{c}$, $\lvertκ_\mathrm{c}\rvert$ $\lt$ 47 (51).

0 data tables match query

Evidence for the collective nature of radial flow in Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-068, 2025.
Inspire Record 2907010 DOI 10.17182/hepdata.158359

Anisotropic flow and radial flow are two key probes of the expansion dynamics and properties of the quark-gluon plasma (QGP). While anisotropic flow has been extensively studied, radial flow, which governs the system's radial expansion, has received less attention. Notably, experimental evidence for the global and collective nature of radial flow has been lacking. This Letter presents the first measurement of transverse momentum ($p_{\mathrm{T}}$) dependence of radial flow fluctuations ($v_0(p_{\mathrm{T}})$) over $0.5<p_{\mathrm{T}}<10$ GeV, using a two-particle correlation method in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. The data reveal three key features supporting the collective nature of radial flow: long-range correlation in pseudorapidity, factorization in $p_{\mathrm{T}}$, and centrality-independent shape in $p_{\mathrm{T}}$. The comparison with a hydrodynamic model demonstrates the sensitivity of $v_0(p_{\mathrm{T}})$ to bulk viscosity, a crucial transport property of the QGP. These findings establish a new, powerful tool for probing collective dynamics and properties of the QGP.

0 data tables match query

Observation of tWZ production at the CMS experiment

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-TOP-24-009, 2025.
Inspire Record 3072016 DOI 10.17182/hepdata.158454

The first observation of single top quark production in association with a W and a Z boson in proton-proton collisions is reported. The analysis uses data at center-of-mass energies of 13 and 13.6 TeV recorded with the CMS detector at the CERN LHC, corresponding to a total integrated luminosity of 200 fb$^{-1}$. Events with three or four charged leptons, which can be electrons or muons, are selected. Advanced machine-learning algorithms and improved reconstruction methods, compared to an earlier analysis, result in an unprecedented sensitivity to tWZ production. The measured cross sections for tWZ production are 248 $\pm$ 52 fb and 244 $\pm$ 74 fb for $\sqrt{s}$ =13 and 13.6 TeV, respectively. The signal is established with a statistical significance of 5.8 standard deviations, with 3.5 expected, compared to the background-only hypothesis.

0 data tables match query

Inclusive and differential measurements of the $\mathrm{t\bar{t}}γ$ cross section and the $\mathrm{t\bar{t}}γ/\mathrm{t\bar{t}}$ cross section ratio in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-TOP-23-002, 2025.
Inspire Record 3076866 DOI 10.17182/hepdata.157848

Inclusive and differential cross section measurements of top quark pair ($\mathrm{t\bar{t}}$) production in association with a photon ($γ$) are performed as a function of lepton, photon, top quark, and $\mathrm{t\bar{t}}$ kinematic observables, using data from proton-proton collisions at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events containing two leptons (electrons or muons) and a photon in the final state are considered. The fiducial cross section of $\mathrm{t\bar{t}}γ$ is measured to be 137 $\pm$ 8 fb, in a phase space including events with a high momentum, isolated photon. The fiducial cross section of $\mathrm{t\bar{t}}γ$ is also measured to be 56 $\pm$ 5 fb when considering only events where the photon is emitted in the production part of the process. Both measurements are in agreement with the theoretical predictions, of 126 $\pm$ 19 fb and 57 $\pm$ 5 fb, respectively. Differential measurements are performed at the particle and parton levels. Additionally, inclusive and differential ratios between the cross sections of $\mathrm{t\bar{t}}γ$ and $\mathrm{t\bar{t}}$ production are measured. The inclusive ratio is found to be 0.0133 $\pm$ 0.0005, in agreement with the standard model prediction of 0.0127 $\pm$ 0.0008. The top quark charge asymmetry in $\mathrm{t\bar{t}}γ$ production is also measured to be $-$0.012 $\pm$ 0.042, compatible with both the standard model prediction and with no asymmetry.

0 data tables match query

Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 846 (2023) 138154, 2023.
Inspire Record 2648097 DOI 10.17182/hepdata.139723

Parton energy loss in the quark-gluon plasma (QGP) is studied with a measurement of photon-tagged jet production in 1.7 nb$^{-1}$ of Pb+Pb data and 260 pb$^{-1}$ of $pp$ data, both at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV, with the ATLAS detector. The process $pp \to \gamma$+jet+$X$ and its analogue in Pb+Pb collisions is measured in events containing an isolated photon with transverse momentum ($p_\mathrm{T}$) above $50$ GeV and reported as a function of jet $p_\mathrm{T}$. This selection results in a sample of jets with a steeply falling $p_\mathrm{T}$ distribution that are mostly initiated by the showering of quarks. The $pp$ and Pb+Pb measurements are used to report the nuclear modification factor, $R_\mathrm{AA}$, and the fractional energy loss, $S_\mathrm{loss}$, for photon-tagged jets. In addition, the results are compared with the analogous ones for inclusive jets, which have a significantly smaller quark-initiated fraction. The $R_\mathrm{AA}$ and $S_\mathrm{loss}$ values are found to be significantly different between those for photon-tagged jets and inclusive jets, demonstrating that energy loss in the QGP is sensitive to the colour-charge of the initiating parton. The results are also compared with a variety of theoretical models of colour-charge-dependent energy loss.

0 data tables match query

Nuclear modification of $\Upsilon$ states in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Lett.B 835 (2022) 137397, 2022.
Inspire Record 2037640 DOI 10.17182/hepdata.88291

Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into $\mu^+\mu^-$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S))$$\gt$$R_\mathrm{pPb}(\Upsilon(2S))$$\gt$$R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon$$\lt$ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert$$\lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.

0 data tables match query