A search for the neutral Higgs boson in the processes e + e − → Z → H 0 γ → q q γ and e + e − → Z → Z ∗ H 0 → q q γγ has been performed using 2.8 million hadronic Z decays collected with the L3 detector at LEP from 1991 through 1994. No evidence for these processes has been observed. Upper limits at 95% confidence level for the corresponding cross sections have been set and the results have been compared with theoretical predictions beyond the Standard Model.
The magnitude of the cross section is multiplied on the branching ratio.
A lower limit on the oscillation frequency of the B s 0 B s 0 system is obtained from approximately four million hadronic Z decays accumulated using the ALEPH detector at LEP from 1991 to 1995. Leptons are combined with opposite sign D s − candidates reconstructed in seven different decay modes as evidence of semileptonic B s 0 decays. Criteria designed to ensure precise proper time reconstruction select 277D s − ℓ + combinations. The initial state of these B s 0 candidates is determined using an algorithm optimized to efficiently utilise the tagging information available for each event. The limit at 95% confidence level on the B s 0 B s 0 oscillation frequency is Δm s > 6.6 ps −1 . The same data is used to update the measurement of the B s 0 lifetime, τ s = 1.54 −0.13 +0.14 (stat) ± 0.04 (syst) ps.
This result supersedes the previous measurement ( 1.59 +0.17 -0.15 (stat.) +-0.03 (sys.) ps ) presented in reference PL 361B, 221.
No description provided.
The inclusive production of the f ′ 2 (1525) in hadronic Z 0 decays has been studied in data collected by the DELPHI detector at LEP. The Ring Imaging Cherenkov detectors were important tools in the identification of the decay f ′ 2 (1525) → K + K − . The average number of f ′ 2 (1525) produced per hadronic Z decay, 〈f′ 2 〉 = 0.020 ± 0.005 (stat) ± 0.006 (syst), and the momentum distribution of the f ′ 2 (1525) have both been measured. The mass and width of the f ′ 2 (1525) are found to be 〈M f′ 2 〉 = 1535 ± 5 (stat) ± 4 (syst) MeV/c 2 , (T f′ 2 ;) = 60 ± 20 (stat) ± 19 (syst) MeV/c 2
SIG in (1/SIG) is the total hadronic cross section.
No description provided.
A search has been made for direct production of heavy quarkonium states in more than 3 million hadronic Z0 decays in the 1991–1994 DELPHI data. Prompt J/ψ, ψ(2S) and Υ candidates have been searched for through their leptonic decay modes using criteria based on the kinematics and decay vertex positions. New upperlimits are set at the 90% confidence level for Br(Z0 → (QQ) X)/Br (Z0 → hadrons) for various strong production mechanisms of J/ψ and Υ these range down to 0.9 × 10−4. The limits are set in the presence of a small excess (∼ 1% statistical probability of a background fluctuation) in the sum of candidates from prompt J/ψ, ψ(2S), Υ(1S),Υ(2S) and Υ(3S) relative to the estimated background.
The analysis of hadrons (from X) provides to distinguish of the various decay modes of Z-boson (see text).
No description provided.
We present the first measurement of the correlation between the $Z^0$ spin and the three-jet plane orientation in polarized $Z^0$ decays into three jets in the SLD experiment at SLAC utilizing a longitudinally polarized electron beam. The CP-even and T-odd triple product $\vec{S_Z}\cdot(\vec{k_1}\times \vec{k_2})$ formed from the two fastest jet momenta, $\vec{k_1}$ and $\vec{k_2}$, and the $Z^0$ polarization vector $\vec{S_Z}$, is sensitive to physics beyond the Standard Model. We measure the expectation value of this quantity to be consistent with zero and set 95\% C.L. limits of $-0.022 < \beta < 0.039$ on the correlation between the $Z^0$-spin and the three-jet plane orientation.
Asymmetry extracted from formula: (1/SIG(Q=3JET))*D(SIG)/D(COS(OMEGA)) = 9/16*[(1-1/3*(COS(OMEGA))**2) + ASYM*Az*(1-2*Pmis(ABS(COS(OMEGA))))*COS(OMEGA)], where OMEGA is polar angle of [k1,k2] vector (jet-plane normal), Pmis is the p robability of misassignment of of jet-plane normal, Az is beam polarization. Jets were reconstructed using the 'Durham' jet algorithm with a jet-resol ution parameter Yc = 0.005.
An improved measurement of the average b hadron lifetime is performed using a sample of 1.5 million hadronic Z decays, collected during the 1991–1993 runs of ALEPH, with the silicon vertex detector fully operational. This uses the three-dimensional impact parameter distribution of lepton tracks coming from semileptonic b decays and yields an average b hadron lifetime of 1.533 ± 0.013 ± 0.022 ps.
No description provided.
A sample of 25000 Z 0 → τ + τ − events collected by the DELPHI experiment at LEP in 1991 and 1992 is used to measure the leptonic branching fractions of the τ lepton. The results are B(τ → eν ν ) = (17.51 ± 0.39) % and B(τ → μν ν ) = (17.02 ± 0.31) %. The ratio of the muon and electron couplings to the weak charged current is measured to be g μ g e = 1.000 ± 0.013 , satisfying e-μ universality. The leptonic branching fraction corrected to the value for a massless lepton, assuming e-μ universality, is found to be B(τ → lν ν ) = (17.50 ± 0.25) %.
Axis error includes +- 0.23/0.23 contribution (Data statistics).
Axis error includes +- 0.19/0.19 contribution (Data statistics).
Combined from the two branching fractions above. E-MU universality assumed.
Charmless hadronic decays of beauty mesons have been searched for using the data collected with the DELPHI detector at the LEP collider. Several two, three and four-body decay modes have been investigated. Particle identification was used to distinguish the final states with protons, kaons and pions. Three candidate events selected in two-body decay modes are interpreted as evidence for charmless B decays. No excess has been found in higher multiplicity modes and improved upper limits for some of the branching ratios are given.
Two body decay modes. Upper limits at 90% CL. In computing of limits the fractions of B/(d,u)(0,-) and B/S0 mesons were assumed to be 0.39 and 0.12 respectively. Limits are given for the weighted average of the decay rates of the two neutral B mesons.
Three body decay modes. Upper limits at 90% CL.
Four body decay modes. Upper limits at 90% CL.
From 1.4 million hadronic Z decays collected by the ALEPH detector at LEP, an enriched sample of Z → cc̄ events is extracted by requiring the presence of a high momentum D ∗± . The charm quark forward-backward charge asymmetry at the Z pole is measured to be A FB 0. c = (8.0 ± 2.4) % corresponding to an effective electroweak mixing angle of sin 2 θ W eff = 0.2302 ± 0.0054.
Value of SIN2TW(eff) from CQ-quark asymmetries.
No description provided.
We have measured the multiplicity of charm quark pairs arising from gluon splitting in a sample of about 3.5 million hadronic Z 0 decays. By selecting a 3-jet event topology and tagging charmed hadrons in the lowest energy jet using leptons, we established a signature of heavy quark pair production from gluons. The average number of gluons splitting into a c c pair per hadronic event was measured to be n g→c c =(2.27±0.28±0.41) × 10 −2 .
Axis error includes +- 8.4/8.4 contribution (Total generator error for the electron channel due to the uncertainties in parameters of Peterson model of fragmentation, LAMBDA_QCD, ALPHA_S, Lund fragmentation parameters and lepton decay model).