A study of pp interactions at an incident momentum of 16.2 GeV/ c leading to two-prong non-strange final states was carried out in an exposure of the 2m CERN hydrogen bubble chamber. The c.m. angle and momentum distributions for the outgoing particles in the final states pn π + and pp π 0 are presented and discussed. These final states were analysed in terms of quasi two-body final states - N(Nπ), with the pion-nucleon system in an I = 1 2 or I = 3 2 state. A determination of these two isospin amplitudes and their interference term is then carried out. The reaction pp → pn π + is found to be well described by a Reggeized exchange model, as well as by a double Regge-exchange model.
No description provided.
The asymmetry parameter A in π−p elastic scattering at incident pion laboratory kinetic energies Tπ of 98, 238, and 2922 MeV and in π−p charge-exchange scattering π−p→π0n at Tπ=238, 292, and 310 MeV have been measured over a wide range of scattering angles (typically from about 60° to 130° c.m.) with a polarized proton target. The data have been used in an energy-independent phase-shift analysis to improve the precision of the pion-nucleon phase shifts, to set new limits on violation of isospin conservation in the pion-nucleon S wave, and to confirm significant charge dependence in the P32 wave.
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Elastic cross-section measurements are presented for π ± −p at 20 GeV/ c and π − −p at 30 GeV/ c incident momenta in the large angle region (50° to 90° in the c.m. system). The data are compared with published lower energy elastic cross sections. A test is made of the dimensional counting rules for π ± −p elastic scattering and some indication of a deviation from this rule is observed in the π − −p case. A comparison is also made with the predictions of the constituent interchange model. Although the broad features of the predictions are confirmed, there are some important discrepancies. Finally, the predictions of the model due to Preparata and Soffer are also compared with the new data.
No description provided.
THE UPPER LIMIT QUOTED WHEN NO EVENTS OBSERVED IS THE CROSS SECTION CORRESPONDING TO ONE DETECTED EVENT.
THE UPPER LIMIT QUOTED WHEN NO EVENTS OBSERVED IS THE CROSS SECTION CORRESPONDING TO ONE DETECTED EVENT.
We report the results of a study of the reaction p p → p + x at 32.1 GeV c , where the recoiling proton has a small laboratory momentum. The reaction is studied in the 4.5 m Mirabelle bubble chamber at Serpukhov. We compare the diffractive dissociation of the incident antiproton to other incident particles.
No description provided.
CALCULATED USING THE OPTICAL THEOREM AND THE TOTAL CROSS SECTION FOR AP P OF 46 +- 0.3 MB.
The angular distribution π+-p at 1.0 GeV was determined on the basis of l032 events measured in a propane bubble chamber. Comparison is made with data of 820 and 900 MeV and with angular distributions π−+p at similar energies.
No description provided.
A simple, large-solid-angle apparatus, specially suited for the measurement of backward elastic scattering of medium-energy pions on protons and deuterons, is described. The method of analysis which reduces background and determines elastic events from a data sample of 185 MeV negative pions incident on a D 2 O target is discussed. Results for 141 MeV π + p and 185 MeV π − p backward cross-sections are also presented and compared with cross-sections calculated from known phase shifts.
.
.
The differential cross-section for elastic scattering π−+p has been determined on the basis of 1 421 events observed in a propane bubble chamber. The angular distribution presents a backward bump (θ>90°) of (31.5±1.3)%. The amplitude at 0° obtained extrapolating the angular distribution by means of a least squares fit is compared with the value obtained from the dispersion relations and the optical theorem. New values of the pion proton cross-sections were taken into account for the dispersion relation integrals. Using the same best fit of the angular distribution a value for the interaction radius is obtained from considerations based on the diffraction scattering part.
No description provided.
The angular distribution of π + p elastic scattering has been measured at an incident momentum of 10 GeV/ c . Nearly the whole angular range was covered in one experimental set-up. The pronounced dip at − t = 2.8 (GeV/ c ) 2 , observed at lower momenta, has diminished and is essentially a shoulder at 10 GeV/ c . The other structure at larger momentum transfers are also different in detail from what we observed at 5 GeV/ c . In the 90° c.m. region the differential cross-section is approximately one nb/(GeV/ c ) 2 , which is more than two orders of magnitude lower than at 5 GeV/ c .
THESE DATA ARE REPORTED MORE FULLY IN C. BAGLIN ET AL., NP B98, 365 (1975).
Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.
Elastic PI- P cross section for incident kinetic energy 43.3 MeV for the rotated target data. Errors shown are statistical only.
Elastic PI- P cross section for incident kinetic energy 43.3 MeV. Errors shown are statistical only.
Elastic PI- P cross section for incident kinetic energy 37.1 MeV. Errors shown are statistical only.
Measurements of the differential elastic cross sections for π − p scattering at incident momenta of 20 and 50 GeV c and π + p at 50 GeV c in the momentum transfer range 0.7 < |t|; < 8.0 ( GeV c ) 2 are presented. The data are compared with various models of elastic scattering.
No description provided.
No description provided.
No description provided.