The pp->pp phi reaction has been studied at the Cooler Synchrotron COSY-Juelich, using the internal beam and ANKE facility. Total cross sections have been determined at three excess energies epsilon near the production threshold. The differential cross section closest to threshold at epsilon=18.5 MeV exhibits a clear S-wave dominance as well as a noticeable effect due to the proton-proton final state interaction. Taken together with data for pp omega-production, a significant enhancement of the phi/omega ratio of a factor 8 is found compared to predictions based on the Okubo-Zweig-Iizuka rule.
K+ K- invariant mass distribution.
Total cross sections.
Differential decay distribution of the K+ in the rest frame of the PHI-meson w.r.t. the beam.
To determine nonspherical angular momentum amplitudes in hadrons at long ranges (low Q^2), data were taken for the p(\vec{e},e'p)\pi^0 reaction in the Delta region at Q^2=0.060 (GeV/c)^2 utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios at W=1232 MeV are: M_{1+}^{3/2} = (40.33 +/- 0.63_{stat+syst} +/- 0.61_{model}) (10^{-3}/m_{\pi^+}),Re(E_{1+}^{3/2}/M_{1+}^{3/2}) = (-2.28 +/- 0.29_{stat+syst} +/- 0.20_{model})%, and Re(S_{1+}^{3/2}/M_{1+}^{3/2}) = (-4.81 +/- 0.27_{stat+syst} +/- 0.26_{model})%. These disagree with predictions of constituent quark models but are in reasonable agreement with lattice calculations with non-linear (chiral) pion mass extrapolations, with chiral effective field theory, and with dynamical models with pion cloud effects. These results confirm the dominance, and general Q^2 variation, of the pionic contribution at large distances.
Measured value of SIG(C=T) + EPS*SIG(C=L) as a function of the pion angle relative to the virtual photon direction.
Measured value of SIG(C=TT) as a function of the pion angle relative to thevirtual photon direction.
Measured value of SIG(C=LT) as a function of the pion angle relative to thevirtual photon direction.
The STAR Collaboration at RHIC reports measurements of azimuthal correlations of high transverse momentum (p_T) charged hadrons in Au+Au collisions at higher p_T than reported previously. As p_T is increased, a narrow, back-to-back peak emerges above the decreasing background, providing a clear dijet signal for all collision centralities studied. Using these correlations, we perform a systematic study of dijet production and suppression in nuclear collisions, providing new constraints on the mechanisms underlying partonic energy loss in dense matter.
Centrality dependence (number of participants Npart) of near-side ($|\Delta\phi|$<0.63) yields in d+Au and Au+Au collisions at 200 GeV, for $8 < p_T^{trig} < 15$ GeV/c and various $p_T^{assoc}$ ranges. Data for $3 < p_T^{assoc} < 4$ GeV/c are scaled by 1.5 for clarity. The point with the smallest Npart is the yield in d+Au collisions and the others are those in Au+Au collisions.
Centrality dependence (number of participants Npart) of away-side ($|\Delta\phi-\pi|$<0.63) yields in d+Au and Au+Au collisions at 200 GeV, for $8 < p_T^{trig} < 15$ GeV/c and various $p_T^{assoc}$ ranges. Data for $3 < p_T^{assoc} < 4$ GeV/c are scaled by 1.5 for clarity. The point with the smallest Npart is the yield in d+Au collisions and the others are those in Au+Au collisions.
Trigger-normalized fragment distribution $D(z_T)$ with $8 < p_T^{trig} < 15$ GeV/c for near-side ($|\Delta\phi|$<0.63) correlations in d+Au collisions at 200 GeV.
We report the measurements of $\Sigma (1385)$ and $\Lambda (1520)$ production in $p+p$ and $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV from the STAR collaboration. The yields and the $p_{T}$ spectra are presented and discussed in terms of chemical and thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central $Au+Au$ collisions. Our results indicate that there may be a time-span between chemical and thermal freeze-out during which elastic hadronic interactions occur.
The transverse mass spectra for $\Sigma^{∗}$ and $\Lambda^{∗}$ in p+p and in central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Statistical and systematical errors are included.
Resonance to stable particle ratios for p + p and Au + Au collisions. The ratios are normalized to unity in p + p and compared to thermal and UrQMD model predictions for central Au + Au [8, 12]. Statistical and systematic uncertainties are included in the error bars. (In the paper figure, K*/K dNCh/dy axis is shifted +30 for visual purposes to seperate the error bar contributions.)
The inclusive production of omega and phi mesons is studied in the backward region of the interaction of 12 GeV protons with polyethylene, carbon, and copper targets. The mesons are measured in e^+ e^- decay channels. The production cross sections of the mesons are presented as functions of rapidity y and transverse momentum p_T. The nuclear mass number dependences (A dependences) are found to be A^{0.710 +/- 0.021(stat) +/- 0.037(syst)} for omega mesons and A^{0.937 +/- 0.049(stat) +/- 0.018(syst)} for phi mesons in the region of 0.9 < y < 1.7 and p_T < 0.75 GeV/c.
Differential cross section as a function of rapidity (YRAP) for OMEGA production.
Differential cross section as a function of rapidity (YRAP) for PHI production.
Differential cross section as a function of transverse momentum (PT) for OMEGA production.
Differential dijet cross sections are measured in photoproduction in the region of photon virtualities Q^2 < 1 GeV^2 with the H1 detector at the HERA ep collider using an integrated luminosity of 66.6 pb^{-1}. Jets are defined with the inclusive k_T algorithm and a minimum transverse momentum of the leading jet of 25 GeV is required. Dijet cross sections are measured in direct and resolved photon enhanced regions separately. Longitudinal proton momentum fractions up to 0.7 are reached. The data compare well with predictions from Monte Carlo event generators based on leading order QCD and parton showers and with next-to-leading order QCD calculations corrected for hadronisation effects.
Bin averaged cross sections for dijet photoproduction shown separately for high and low X(C=GAMMA).
Bin averaged cross sections for dijet photoproduction shown separately for high and low X(C=GAMMA) and for dijet mass > 65 GeV.
Bin averaged cross sections for dijet photoproduction shown separately for high and low XP.
We present a measurement of the t anti-t production cross section in p anti-p collisions at s**(1/2) = 1.96 TeV which uses events with an inclusive signature of significant missing transverse energy and jets. This is the first measurement which makes no explicit lepton identification requirements, so that sensitivity to W --> tau nu decays is maintained. Heavy flavor jets from top quark decay are identified with a secondary vertex tagging algorithm. From 311 pb-1 of data collected by the Collider Detector at Fermilab we measure a production cross section of 5.8 +/- 1.2(stat.)+0.9_-0.7(syst.) pb for a top quark mass of 178 GeV/c2, in agreement with previous determinations and standard model predictions.
TTBAR production cross section.
The diffractive photoproduction of rho mesons, e p \to e rho Y, with large momentum transfer squared at the proton vertex, |t|, is studied with the H1 detector at HERA using an integrated luminosity of 20.1 pb^{-1}. The photon-proton centre of mass energy spans the range 75 < W < 95 GeV, the photon virtuality is restricted to Q^2 < 0.01 GeV^2 and the mass M_Y of the proton remnant is below 5 GeV. The t dependence of the cross section is measured for the range 1.5 < |t| < 10.0 GeV^2 and is well described by a power law, dsigma/ d|t| \propto |t|^{-n}. The spin density matrix elements, which provide information on the helicity structure of the interaction, are extracted using measurements of angular distributions of the rho decay products. The data indicate a violation of s-channel helicity conservation, with contributions from both single and double helicity-flip being observed. The results are compared to the predictions of perturbative QCD models.
The normalized differential cross section as a function of T.
Normalised decay angular distribution w.r.t. the polar angle THETA.
Normalised decay angular distribution w.r.t. the polar angle THETA.
The NA50 Collaboration has measured heavy-quarkonium production in p-A collisions at 450 GeV incident energy (sqrt(s) = 29.1 GeV). We report here results on the production of the Upsilon states and of high-mass Drell-Yan muon pairs (m > 6 GeV). The cross-section at midrapidity and the A-dependence of the measured yields are determined and compared with the results of other fixed-target experiments and with the available theoretical estimates. Finally, we also address some issues concerning the transverse momentum distributions of the measured dimuons.
Drell-Yann (for the mass region MMUMU>6GeV/c**2) and bottomonium cross sections, and their ratio.
Mean pT and Mean PT**2 for Drell-Yann (4.5<MMUMU<8 GeV/c**2) Errors for Drell-Yann are purely statistical, error value for Upsilon includes a systematical error due to uncertianty in the extrapolation of the drell-yann yield into the upsilon region. The total error is anyway dominated by the statistical contribution.
ALPHA parameter.
The proton-nucleon cross section ratio $R=Br(\Upsilon\to l^+l^-) d\sigma(\Upsilon)/dy|_{y=0} / {\sigma(J/\psi)}$ has been measured with the HERA-B spectrometer in fixed-target proton-nucleus collisions at 920 GeV proton beam energy corresponding to a proton-nucleon cms energy of sqrt{s}=41.6 GeV. The combined results for the Upsilon decay channels Upsilon $\to e^+e^-$ and Upsilon $\to\mu^+\mu^-$ yield a ratio $R=(9.0 \pm 2.1) 10^{-6}$. The corresponding Upsilon production cross section per nucleon at mid-rapidity (y=0) has been determined to be $Br(\Upsilon\to{}l^+l^-) {d\sigma(\Upsilon)/dy}|_{y=0}= 4.5 \pm 1.1 $ pb/nucleon.
Ratio of the UPSILON production cross section to the total J/PSI production cross section in P NUCLEON interactions for the E+ E- and MU+ MU- channels separately and combined. The total uncertainty is indicated for the combined results.
UPSILON production cross section at midrapidity in P NUCLEON interactions for the E+ E- and MU+ MU- channels separately and combined. The total uncertainty is indicated for the combined results.