None
No description provided.
We compare some aspects of the N→N π , N→N ππ and N → Λ K diffractive fragmentation systems induced by 14.3 GeV/ c incident K − mesons with those obtained in pp interactions at ISR energies. The similarity between the low-mass Nπ and Nππ systems produced by different incident particles at c.m. energies differing by an order of magnitude is very striking. The shapesof the mass spectra (not the M 2 / s spectra) are approximately independent of s , both in the resonant and non-resonant diffractive dissociation components. These findings, as well as features of the differential cross sections and decay angular distributions, indicate that the (asymptotic) diffractive dynamics operative at ISR energies is already dominant at 10–20 GeV/ c , remains essentially unchanged over this broad energy range, and has approximate vertex factorization properties.
No description provided.
No description provided.
We have measured large-transverse-momentum (p⊥) inclusive π0 production at c.m. angles centered near 90° for π±p and pp interactions at 100 and 200 GeV/c. This is the first such measurement using a pion beam. The ratio σ(pp→π0X)σ(πp→π0X) decreases with increasing p⊥ and is independent of energy when expressed as a function of x⊥=p⊥pmax. We compare the data with predictions of various models.
No description provided.
No description provided.
No description provided.
The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.
DIPION CHANNEL CROSS SECTION.
THE TOTAL CROSS SECTION WAS OBTAINED BY THE AUTHORS FROM A FIT TO THE SINGLE ARM DATA OF S. STEIN ET AL., PR D12, 1884 (1975).
No description provided.
Reactions K + n → (K π )N have been studied using data from the CERN 2 m deuterium bubble chamber obtained with incident K + of 8.25 GeV/ c . There is an abundant production of K ∗ (892) and K ∗ (1420). The reaction and K ∗ resonance production cross sections are presented. K ∗ production and decay angular distributions are analyzed. Charge-exchange reactions are dominated by unnatural parity exchange and the non-charge-exchange reaction by natural parity exchange. The K ∗ 0 (892) data are in good agreement with the predictions of an OPE absorption model. A broad enhancement around 1850 MeV could be interpreted as a signal for the K ∗ 0 (1780).
No description provided.
No description provided.
FIT TO D(SIG)/DT = A*EXP(SLOPE*TP) FOR K* EVENTS WITH -TP < 0.24 GEV**2.
The inclusive spectra for p p collisions at 22.4 GeV/ c are investigated. We show that the transverse momentum distributions resemble those in high-energy pp interactions and discuss the influence of annihilation processes on the p T 2 distributions. The invariant inclusive cross section for pions in the central region is found to be 28 ± 1 mb. A charge asymmetry is indicated by the y ∗ spectrum in the central region, the asymmetry parameter having the value 0.15 ± 0.01. Finally, we estimate the upper limit of the diffraction dissociation of the beam particle to be 3.68 −0.15 +0.45 mb.
No description provided.
No description provided.
No description provided.
Analyzing a sample of 220 000 events from an experiment still in progress at the CERN Proton Synchrotron (PS), 60 pairs of electrons with an energy above 700 MeV have been observed. The electrons, produced by annihilation of antiprotons stopped in a liquid-hydrogen target, are detected with optical spark chambers and scintillation counters. Twenty-nine out of these 60 pairs have been found to be collinear; normalizing with respect to the hadronic two-body channels π + π − and K + K − , a braching ratio B ee =Γ( p ̄ p → e + e − )/Γ( p ̄ p → total ) = (3.2 ± 0.9) × 10 −7 has been obtained
No description provided.
Inelastic electron scattering cross sections have been measured for four-momentum transfers between 4.1 GeV 2 and 30.5 GeV 2 . At the large scattering angles of this experiment, the dominant contribution to the cross section comes from the W 1 structure function. In the conventional scaling variables, x and x ′, this structure function does not exhibit scaling behavior, and at fixed x or x ′ it is found to decrease with increasing four-momentum transfer.
No description provided.
No description provided.
No description provided.
Results are reported for the invariant differential cross-section of charged pions produced at x = 0 in proton-proton collisions at the CERN ISR. The range covered is 40 to 400 MeV/c in transverse momentum and 23 to 63 GeV in collision energy. The inclusive cross-section for π + and π − are increasing by 36 ± 2% and 41 ± 2%, respectively over the ISR energy range with a somewhat stronger increase at the lowest transverse momenta. The transverse momentum distribution is well described by an exponential in the transverse energy.
No description provided.
No description provided.
No description provided.