The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.
Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab.
Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES I settings.
Asymmetry results on $\vec e-^2$H parity-violating scattering from the PVDIS experiment at JLab, for RES II settings.
We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in $p^\uparrow+p$ collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of five standard deviations at high transverse momenta, at high pseudorapidities eta>0.5, and for pair masses around the mass of the rho-meson. This is the first direct transversity measurement in p+p collisions. Comparing the results to data from lepton-nucleon scattering will test the universality of these spin-dependent quantities.
$p_T$ asymmetries, $\eta$ < 0, maximum opening angle of 0.2.
$<M_{inv}>$ asymmetries, $\eta$ < 0, maximum opening angle of 0.2.
$p_T$ asymmetries, $\eta$ > 0, maximum opening angle 0.2.
A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139 $\mathrm{fb}^{-1}$ of data collected by the ATLAS detector at the Large Hadron Collider during $pp$ collisions at $\sqrt{s}=13$ TeV. The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic $t\bar{t}$ decay channel, and the hadronically decaying top quark must have transverse momentum above $350$ GeV. The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be $-0.043\pm0.020$, in agreement with the SM prediction of $-0.037\pm0.003$. Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits.
Data Measurements and predictions of the energy asymmetry in three bins of the jet angle $\theta_j$. The SM prediction was obtained from simulations of $t\bar{t}j$ events with MadGraph5_aMC@NLO + Pythia 8 at NLO in QCD for $t\bar{t}j$ + PS, including MC statistical and scale uncertainties.
Data measurements and predictions of the energy asymmetry in three bins of the jet angle $\theta_j$. The SM prediction was obtained from simulations of $t\bar{t}j$ events with MadGraph5_aMC@NLO + Pythia 8 at NLO in QCD for $t\bar{t}j$ + PS, including MC statistical and scale uncertainties.
Correlation coefficients $\rho_{i,j}$ for the statistical and systematic uncertainties between the $i$-th and $j$-th bin of the differential $A_E$ measurement as a function of the jet scattering angle $\theta_j$
We present measurements of Collins asymmetries in the inclusive process $e^+e^- \rightarrow h_1 h_2 X$, $h_1h_2=KK,\, K\pi,\, \pi\pi$, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb$^{-1}$ collected by the BaBar experiment at the PEP-II $B$ factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike- to like-sign, and unlike- to all charged $h_1 h_2$ pairs, which increase with hadron energies. The $K\pi$ asymmetries are similar to those measured for the $\pi\pi$ pairs, whereas those measured for high-energy $KK$ pairs are, in general, larger.
Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.
Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{2}/(1+\cos^2\theta_{2})$ is summarized, calculated in the RF0 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.
Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for $K\pi$ hadron pairs. In the first column, the $z$ bins and their respective mean values for the hadron ($K$ or $\pi$) in one hemisphere are reported; in the following column, the same variables for the second hadron ($K$ or $\pi$) are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $K\pi$ pair and dividing by the number of $K\pi$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.
We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^\pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass energies of $\sqrt{s}$=500 and 510~GeV. These asymmetries allow direct access to the anti-quark polarized parton distribution functions due to the parity-violating nature of the $W$-boson coupling to quarks and anti-quarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb$^{-1}$, which exceeds previous PHENIX published results by a factor of more than 27. These high $Q^2$ data provide an important addition to our understanding of anti-quark parton helicity distribution functions.
Longitudinal single-spin asymmetries, $A_L$, for the 2011 and 2012 data sets (combined) spanning the entire $\eta$ range of PHENIX ($\left|\eta\right|<0.35$), for the 2013 data set separated into two $\eta$ bins, and for the combined 2011-2013 data sets.
The D0 collaboration has performed a study of spin correlation in tt-bar production for the process tt-bar to bb-bar W^+W^-, where the W bosons decay to e-nu or mu-nu. A sample of six events was collected during an exposure of the D0 detector to an integrated luminosity of approximately 125 pb^-1 of sqrt{s}=1.8 TeV pp-bar collisions. The standard model (SM) predicts that the short lifetime of the top quark ensures the transmission of any spin information at production to the tt-bar decay products. The degree of spin correlation is characterized by a correlation coefficient k. We find that k>-0.25 at the 68% confidence level, in agreement with the SM prediction of k=0.88.
No description provided.
The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit, neglecting the effects of B0-BBAR0 mixing.
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit and correcting for B0-BBAR0 mixing. The second systematic error is due to the uncertainty of the mixing factor.
Measurement of the asymmetry in c-quark production on the Z0 peak using a two parameter fit.
We report measurements of the asymmetry A_parallel for inclusive hadron production on longitudinally polarized proton and deuteron targets by circularly polarized photons. The photons were produced via internal and external bremsstrahlung from an electron beam of 48.35 GeV. Asymmetries for both positive and negative signed hadrons, and a subset of identified pions, were measured in the momentum range 10<P<30 GeV at 2.75 and 5.5 degrees. Small non-zero asymmetries are observed for the proton, while the deuteron results are consistent with zero. Recent calculations do not describe the data well.
The asymmetry for polarized photoproduction of inclusive hadrons from a polarized proton target. The errors are statistical only.
The asymmetry for polarized photoproduction of inclusive identified pions from a polarized proton target. The errors are statistical only.
The asymmetry for polarized photoproduction of inclusive hadrons from a polarized deuteron target. The errors are statistical only.
We have measured, with electron tagging, the forward-backward asymmetries of charm- and bottom-quark pair productions at $\langle \sqrt{s} \rangle$=58.01GeV, based on 23,783 hadronic events selected from a data sample of 197pb$~{-1}$ taken with the TOPAZ detector at TRISTAN. The measured forward-backward asymmetries are $A_{FB}~c = -0.49 \pm 0.20(stat.) \pm 0.08 (sys.)$ and $A_{FB}~b = -0.64 \pm 0.35(stat.) \pm 0.13 (sys.)$, which are consistent with the standard model predictions.
No description provided.
The production of electrons by bottom and charm hadrons has been studied in e + e − annihilation at 34.6 GeV center of mass energy. It is observed that the b quark fragmentation function is peaked at large values of the scaling variable z with 〈 z b 〉 = 0.84 +0.15 + 0.15 −0.10 − 0.11 . For c quarks 〈 z c 〉 = 0.57 +0.10 + 0.05 −0.09 − 0.06 is observed. A forward-backward charge asymmetry of A = −0.25 ± 0.22 was measured in b production.
THE VALUE OF ASYMMETRY WAS DETERMINED USING A SAMPLE OF PROMPT ELECTRONS.
THE VALUE OF ASYMMETRY WAS DETERMINED USING A SAMPLE OF PROMPT ELECTRONS.