Resonance production in the γγ reactionse+e−→e+e+e−π0π0 ande+e−π0η has been studied with the JADE detector at PETRA. The decay widths into γγ of thef2(1270),a0(980) anda2(1320) were measured to be\(\Gamma _{\gamma \gamma } (f_2 (1270)) = 3.19 \pm 0.09_{ - 0.38}^{ + 0.22} \) Kev,Γλλ(a0(980))=0.28±0.04±0.10 KeV/BR(a0(980)→π0η) andΓλλ(a2(1320))=1.01±0.14±0.22KeV. For thef0(975) andf4(2050) upper limits of the widths were obtained,Γλλ(f0(975))<0.6 KeV, andΓλλ(f4(2050))<1.1 KeV, both at the 95% C.L. Assuming that the spin 0 background under thef2(1270) is small, thef2(1270) was found to be produced exclusively in a helicity 2 state. The helicity 0 contribution is <15% at the 95% C.L. The cross section forλλ→π0π0 in the mass range 2.0–3.5 GeV/c2 was measured for the first time. Since the cross section forλλ→π+π− is a factor ∼2 larger, ππ production in this range can be interpreted as taking place via isospin 0 production.
Cross section for ABS(COS(THETA*)) < 0.3.
Cross section under assumptions of spin 2, helicity 2 production.
Cross section under assumption of spin 0 production.
The reaction e+e−→e+e−π0π0 has been analyzed using 97 pb−1 of data taken with the Crystal Ball detector at the DESY e−e+ storage ring DORIS II at beam energies around 5.3 GeV. For the first time we have measured the cross section for γγ→π0π0 for π0π0 mvariant masses ranging from threshold to about 2 GeV. We measure an approximately flat cross section of about 10 nb for W=mπ0π0<0.8 GeV, which is below 0.6 GeV, in good agreement with a theoretical prediction based on an unitarized Born-term model. At higher invariant masses we observe formation of the f2(1270) resonance and a hint of the f0(975). We deduce the following two-photon widths: Γγγ(f2(1270))=3.19±0.16±0.280.29 keV and Γγγ(f0(975))<0.53 keV at 90% C.L. The decay-angular distributions show the π0π0 system to be dominantly spin 0 for W<0.7 GeV and spin 2, helicity 2 in the f2(1270) region, with helicity 0 contributing at most 22% (90% C.L.).
Statistical errors only.
Statistical errors only.
We present the general properties of multihadron final states produced by e+e− annihilation at center-of-mass energies from 52 to 57 GeV in the AMY detector at the KEK collider TRISTAN. Global shape, inclusive charged-particle, and particle-flow distributions are presented. Our measurements are compared with QCD+fragmentation models that use either leading-logarithmic parton-shower evolution or QCD matrix elements at the parton level, and either string or cluster fragmentation for hadronization.
Rapidity distribution with respect to the Thrust axis.
Charged particle X distribution.
Charged particle PL distribution.
We present evidence for the non-Abelian nature of QCD from a study of multijet events produced in e+e− annihilations from √s =50 to 57 GeV in the AMY detector at the KEK storage ring TRISTAN. A comparison of the three-jet event fraction at TRISTAN to the fraction of the DESY storage ring PETRA shows that the QCD coupling strength αs decreases with increasing Q2. In addition, measurements of the angular distributions of four-jet events show evidence for the triple-gluon vertex.
No description provided.
No description provided.
We report measurements from elastic photoproduction of ω's on hydrogen for photon energies between 60 and 225 GeV, elastic φ photoproduction on hydrogen between 35 and 165 GeV and on deuterium between 45 and 85 GeV, elastic photoproduction on deuterium of an enhancement at 1.72 GeV/c2 decaying into K+K−, and elastic and inelastic photoproduction on deuterium of pp¯ pairs.
No description provided.
No description provided.
No description provided.
Two-photon production of the exclusive final statesp\(\bar p\)+nπ (n=0, 1, 2, and 3) has been investigated using the ARGUS detector at thee+e− storage ring DORIS II at DESY. The reactionsγγ→p\(\bar p\)π andγγ→p\(\bar p\)π+π−π0 have been observed for the first time, as have theΔ++ and\(\overline {\Delta ^{ ++ } } \) baryons in the final statep\(\bar p\)π+π−. No evidence was found forΔ++\(\overline {\Delta ^{ ++ } } \) production. Topological cross sections for two-photon production ofp\(\bar p\),p\(\bar p\)π0,p\(\bar p\)π+π− andp\(\bar p\)π+π−π0, as well as the crosssection forγγ→Δ++\(\bar p\)π+π−+c.c., have been measured. Upper limits are given for the cross section forγγ→Δ0\(\overline {\Delta ^0 } \),γγ→Δ++\(\overline {\Delta ^{ ++ } } \) andγγ→Λ\(\bar \Lambda \).
Data read from graph.. Additional overall systematic error 13% not included.
Data read from graph.. Additional overall systematic error 13% not included.
Data read from graph.. Additional overall systematic error 13% not included.
Results are presented on the exclusive production of four-prong final states in photon-photon collisions from the TPC/Two-Gamma detector at the SLAC e+e− storage ring PEP. Measurement of dE/dx and momentum in the time-projection chamber (TPC) provides identification of the final states 2π+2π−, K+K−π+π−, and 2K+2K−. For two quasireal incident photons, both the 2π+2π− and K+K−π+π− cross sections show a steep rise from threshold to a peak value, followed by a decrease at higher mass. Cross sections for the production of the final states ρ0ρ0, ρ0π+π−, and φπ+π− are presented, together with upper limits for φρ0, φφ, and K*0K¯ *0. The ρ0ρ0 contribution dominates the four-pion cross section at low masses, but falls to nearly zero above 2 GeV. Such behavior is inconsistent with expectations from vector dominance but can be accommodated by four-quark resonance models or by t-channel factorization. Angular distributions for the part of the data dominated by ρ0ρ0 final states are consistent with the production of JP=2+ or 0+ resonances but also with isotropic (nonresonant) production. When one of the virtual photons has mass (mγ2=-Q2≠0), the four-pion cross section is still dominated by ρ0ρ0 at low final-state masses Wγγ and by 2π+2π− at higher mass. Further, the dependence of the cross section on Q2 becomes increasingly flat as Wγγ increases.
UNTAGGED DATA.
TAGGED DATA, RESULTS OBTAINED USING TRANSVERSE-TRANSVERSE LUMINOSITY ONLY. DATA FOR Q2=0 ARE FROM UNTAGGED SAMPLE, ERRORS DUE TO RELATIVE NORMALISATION OF THESE SAMPLES IS INCLUDED INTO ERRORS QUOTED.
UNTAGGED DATA.
The reactions e + e − →γγγ and e + e − →γγγγ have been studied at center-of-mass energies between 35 and 46.8 GeV with an integrated luninosity of about 130 pb −1 accumulated with the CELLO detector at PETRA. The measurements are compared to QED calculations up to third and fourth orders of perturbation theory. Excellent agreement is observed.
No description provided.
We present data on energy-energy correlations (EEC) and their related asymmetry (AEEC) ine+e− annihilation in the centre of mass energy range 12<W≦46.8 GeV. The energy and angular dependence of the EEC in the central region is well described byOαs2 QCD plus a fragmentation term proportional to\({1 \mathord{\left/ {\vphantom {1 {\sqrt s }}} \right. \kern-\nulldelimiterspace} {\sqrt s }}\). BareO(α)s2 QCD reproduces our data for the large angle region of the AEEC. Nonperturbative effects for the latter are estimated with the help of fragmentation models. From various analyses using different approximations, we find that values for\(\Lambda _{\overline {MS} } \) in the range 0.1–0.3 GeV give a good description of the data. We also compare analytical calculations in QCD for the EEC in the back-to-back region to our data. The theoretical predictions describe well both the angular and energy dependence of the data in the back-to-back region.
Correlation function binned in cos(chi).
Correlation function binned in cos(chi).
Correlation function binned in cos(chi).
We report cross sections for the process γγ→pp¯ at center-of-mass energies W from 2.0 to 2.8 GeV. These results have been extracted from measurements of e+e−→e+e−pp¯ at an overall center-of-mass energy of 29 GeV, using the TPC/Two-Gamma facility at the SLAC storage ring PEP. Cross sections for the untagged mode [both photons nearly real] are shown to lie well above QCD predictions. Results are also presented for the single-tagged mode [one photon in the range 0.16<Q2<1.6 (GeV/c)2].
Data read from graph in preprint. Statistical errors only.
Data read from graph. Statistical errors only.
Data read from graph. Statistical errors only.