The production of charged kaon pairs in two-photon interactions has been studied with the ARGUS detector and the topological cross section has been measured. The γγ-widths and interference parameters have been determined for the tensor mesonsf2 (1270),a2 (1318) andf′2 (1525). The helicity structure assumed for the continuum contribution has a significant effect on the result. Upper limits have been obtained for the γγ-widths of the glueball candidate statesf2 (1720) andX (2230).
Data read from graph.. Errors are the square roots of the number of events.
Cross section allowing for spin components JM = 22,20,00. Data read from graph.. Additional overall systematic error 8.4%.
Cross section allowing for spin components JM = 22,00. Data read from graph.. Additional overall systematic error 8.4%.
The cross-sections and the forward-backward charge asymmetries of muon and tau pairs produced ine+e− collisions at\(\sqrt s= 35 GeV\) have been measured by the JADE Collaboration. The cross-sections,\(\sigma _\mu(\sqrt s= GeV) = 69.79 \pm 1.35 \pm 1.40 pb\) and\(\sigma _\mu(\sqrt s= GeV) = 71.72 \pm 1.48 \pm 1.61 pb\), are in agreement with the QED α3 prediction. The charge asymmetries areAμ=−(9.9±1.5±0.5)% andAτ=−(8.1±2.0±0.6)% in agreement with the value −9.2% predicted by the standard model, usingMZ=91.0 GeV and sin2θW=0.230.
No description provided.
No description provided.
We present the dijet invariant-mass distribution in the region between 60 and 500 GeV, measured in 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. Jets are restricted to the pseudorapidity interval |η|<0.7. Data are compared with QCD calculations; axigluons are excluded with 95% confidence in the region 120<MA<210 GeV for axigluon width ΓA=NαsMA6, with N=5.
Corrected mass distributions for jets restricted to the pseudorapidity region ABS(ETARAP) <0.7.
An analysis of W- and Z-boson production using data from the Collider Detector at Fermilab at √s =1.8 TeV yields σ(W→ev)/σ(Z→ee)=10.2±0.8(stat)±0.4(syst). The width of the W boson, Γ(W), and a limit on the top-quark mass independent of decay mode are extracted from this measurement.
No description provided.
A measurement of the reaction νe+e−→νe+e− was performed using a beam-stop source of νe. Based upon 234±35 events, we obtain a cross section of σ(νee)=[9.9±1.5(stat)±1.0(syst)]×10−42 cm2 ×[Eν (GeV)]. This reaction is mediated by the exchange of W and Z bosons and is thus sensitive to the interference between them. This interference is measured to be -1.07±0.17(stat)±0.11(syst), consistent with the destructive interference (-1.08) predicted by the standard model.
No description provided.
We present the general properties of multihadron final states produced by e+e− annihilation at center-of-mass energies from 52 to 57 GeV in the AMY detector at the KEK collider TRISTAN. Global shape, inclusive charged-particle, and particle-flow distributions are presented. Our measurements are compared with QCD+fragmentation models that use either leading-logarithmic parton-shower evolution or QCD matrix elements at the parton level, and either string or cluster fragmentation for hadronization.
Rapidity distribution with respect to the Thrust axis.
Charged particle X distribution.
Charged particle PL distribution.
We report on a measurement of the processes e + e − →e + e − , e + e − → μ + μ − , and e + e − → τ + τ − near the Z 0 pole. On the basis of 163 e + e − , 101 μ + μ − and 87 τ + τ − events we obtain Γ ee =89±4±4 MeV, Γ μμ =85±9±6 MeV and Γ ττ =87±10±8 MeV, compatible with the standard model. Combining these with our previous results on hadronic Z 0 decays, we find a hadronic width Γ had =1787±81±90 MeV and an invisible width Γ inv =552±85±71 MeV.
Statistical errors only.
Statistical errors only.
We have measured both the rates and the forward-backward asymmetry of ℓ + ℓ − from Z 0 →ℓ + ℓ − (where ℓ= μ , τ ) with the L3 detector. We obtained Γ ℓℓ =88±4±3 MeV and the vector neutral current coupling constant, g v =0.00±0.07 and the axial vector neutral current coupling constant, g A =−0.515±0.015.
No description provided.
No description provided.
Relative production rates of multijet hadronic final states of Z 0 boson decays, observed in e + e − annihilation around 91 GeV centre of mass energy, are presented. The data can be well described by analytic O( α s 2 ) QCD calculations and by QCD shower model calaculations with parameters as determined at lower energies. A first judgement of Λ MS and of the renormalization scale μ 2 in O( α s 2 ) QCD results in values similar to those obtained in the continuum of e + e − annihilations. Significant scaling violations are observed when the 3-jet fractions are compared to the corresponding results from smaller centre of mass energies. They can be interpreted as being entirely due tot the energy dependence of α s , as proposed by the nonabelian nature of QCD, The possibility of an energy independent coupling constant can be excluded with a significance of 5.7 standard deviations.
Data are corrected for final acceptance and resolution of the detector. No explicit corrections for hadronisation effects are applied.
We report a measurement of the production of antideuterons d in e + e − annihilation at centre-of-mass energies around 10 GeV using the ARGUS detector at the DORIS II storage ring. We observe an enhancement of d production in direct hadronic ϒ (1S) and ϒ (2S) resonance decays. From 21 events width a d candidate the inclusive cross section 1 σ dir had · d σ d p and the production rate of antideuterons are determined. A production rate of (6.0±2.0±0.6) × 10 -5 d per direct hadronic ϒ decay and a 90% CL upper limit of 1.7 × 10 −5 d per e + e − →q q continuum event are obtained. These results are related to antiproton production through a simple model.
Acceptance corrected, background subtracted momentum spectrum observed in UPSI(1S) and UPSI(2S) resonance decays.