We have studied the process e + e − → n γ (n ≥ 2) at centre-of-mass energies of 161.3 GeV and 172.1 GeV. The analysis is based on a sample of events collected by the L3 detector in 1996 corresponding to total integrated luminosities of 10.7 pb −1 and 10.1 pb −1 respectively. The observed rates of events with two and more photons and the characteristic distributions are in good agreement with the Standard Model expectations. This is used to set lower limits on contact interaction energy scale parameters, on the QED cut-off parameters and on the mass of excited electrons.
No description provided.
Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.
Inclusive K*= cross section.
Helicity density matrices elemnts.
Ratios of helicity density matrices elements.
A search for single and multi-photon events with missing energy is performed using data collected at centre-of-mass energies between 161 GeV and 172 GeV for a total of 20.9 pb −1 of integrated luminosity. The results obtained are used to derive the value for the ν ν γ(γ) cross section as well as upper limits on new physics processes.
SIG(C=TOTAL) means the total cross section deduced from measured one.
Production of events with hadronic and leptonic final states has been measured in e^+e^- collisions at centre-of-mass energies of 130-172 GeV, using the OPAL detector at LEP. Cross-sections and leptonic forward-backward asymmetries are presented, both including and excluding the dominant production of radiative Z \gamma events, and compared to Standard Model expectations. The ratio R_b of the cross-section for bb(bar) production to the hadronic cross-section has been measured. In a model-independent fit to the Z lineshape, the data have been used to obtain an improved precision on the measurement of \gamma-Z interference. The energy dependence of \alpha_em has been investigated. The measurements have also been used to obtain limits on extensions of the Standard Model described by effective four-fermion contact interactions, to search for t-channel contributions from new massive particles and to place limits on chargino pair production with subsequent decay of the chargino into a light gluino and a quark pair.
SIG(C=MEAS) and SIG(C=CORR) stand for measured values without (C=MEAS) and with (C=CORR) correction for interference between initial- and final-state radiation.
The angular distribution of the thrust axis. Errors include statistical and systematic effects combined, with the former dominant.
The measured values include the effect of interference between initial- andfinal-state radiation.
Deep inelastic electron-photon scattering is studied using e+e- data collected by the OPAL detector at centre-of-mass energies sqrt{s_ee} ~ M_{Z^0}. The photon structure function F_2^gamma(x,Q^2) is explored in a Q^2 range of 1.1 to 6.6 GeV/c^2 at lower x values than ever before. To probe this kinematic region events are selected with a beam electron scattered into one of the OPAL luminosity calorimeters at scattering angles between 27 and 55 mrad. A measurement is presented of the photon structure function F_2^gamma(x,Q^2) at <Q^2> = 1.86 GeV^2 and 3.76 GeV^2 in five logarithmic x bins from 0.0025 to 0.2.
Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.
Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.
The data collected by DELPHI in 1996 have been used to measure the average charged particle multiplicities and dispersions in q q ̄ events at centre-of-mass energies of s =161 GeV and s =172 GeV, and the average charge multiplicity in WW events at s =172 GeV. The multiplicities in q q ̄ events are consistent with the evolution predicted by QCD. The dispersions in the multiplicity distributions are consistent with Koba-Nielsen-Olesen (KNO) scaling. The average multiplicity of charged particles in hadronic W decays has been measured for the first time; its value, 19.23±0.74(stat+syst), is consistent with that expected for an e + e − interaction at a centre-of-mass energy equal to the W mass. The charged particle multiplicity in W decays shows no evidence of effects of colour reconnection between partons from different W's at the present level of statistics.
No description provided.
No description provided.
No description provided.
This paper describes the measurement of the W boson mass, M_W, and decay width, Gamma_W, from the direct reconstruction of the invariant mass of its decay products in W pair events collected at a mean centre-of-mass energy of sqrt{s} = 172.12 GeV with the OPAL detector at LEP. Measurements of the W pair production cross-section, the W decay branching fractions and properties of the W decay final states are also described. A total of 120 candidate W^+W^- events has been selected for an integrated luminosity of 10.36 pb^-1. The W^+W^- production cross-section is measured to be sigma_WW = 12.3 +/- 1.3(stat.) +/- 0.3(syst.) pb, consistent with the Standard Model expectation. The W^+W^- -> qq(bar) l nu and W^+W^- -> qq(bar)qq(bar) final states are used to obtain a direct measurement of Gamma_W = 1.30^{+0.62}_{-0.55}(stat.) +/- 0.18(syst.) GeV. Assuming the Standard Model relation between M_W and Gamma_W, the W boson mass is measured to be M_W = 80.32 +/- 0.30(stat.) +/- 0.09(syst.) GeV. The event properties of the fully-hadronic decays of W^+W^- events are compared to those of the semi-leptonic decays. At the current level of precision there is no evidence for effects of colour reconnection in the observables studied. Combining data recorded by OPAL at sqrt{s} ~ 161-172 GeV, the W boson branching fraction to hadrons is determined to be 69.8^{+3.0}_{-3.2}(stat.) +/- 0.7(syst.)%, consistent with the prediction of the Standard Model. The combined mass measurement from direct reconstruction and from the W^+W^- production cross-sections measured at sqrt{s} ~ 161 and sqrt{s} ~ 172 GeV is M_W = 80.35 +/- 0.24(stat.) +/- 0.07(syst.) GeV.
The fit assumptions are as follows: fitting branching ratios (C=BR-FIT), lepton universality is assumed (C=LEPT-UNIVERSALITY), and SM Br (C=BR-SM).
The formation of the η ′ in the reaction e + e − →e + e − η ′→e + e − π + π − γ has been measured by the L3 detector at a centre-of-mass energy of 91 GeV . The radiative width of the η ′ has been found to be Γ γγ =4.17±0.10 (stat.) ±0.27 (sys.) keV . The Q 2 dependence of the η ′ formation cross section has been measured for Q 2 ≤10 GeV 2 and the η ′ electromagnetic transition form factor has been determined. The form factor can be parametrised by a pole form with Λ=0.900±0.046 (stat.) ±0.022 (sys.) GeV . It is also consistent with recent non-perturbative QCD calculations.
Cross section of etaprime production.
The transverse, longitudinal and asymmetric components of the fragmentation function are measured from the inclusive charged particles produced in$e^+e^-$collisi
Transverse component of the differential cross section.
Longitudinal component of the differential cross section.
Asymmetric component of the differential cross section.
Searches for supersymmetric particles in channels with one or more photons and missing energy have been performed with data collected by the ALEPH detector at LEP. The data consist of 11.1 pb-1 at $\sqrt{s} = 161 GeV$, 1.1 pb-1 at 170 GeV and 9.5 pb-1 at 172 GeV. The e+e- -> nunu+photon cross section is measured. The data are in good agreement with predictions based on the Standard Model, and are used to set upper limits on the cross sections for anomalous photon production. These limits are compared to two different SUSY models and used to set limits on the neutralino mass. A limit of 71 GeV/c^2 at 95% C.L. is set on the mass of the lightest neutralino ($\tau_{\chi_{1}^{0}} \leq $ 3 ns) for the gauge-mediated supersymmetry breaking and LNZ models.
No description provided.