Inclusive production of $\mathrm{D^{*\pm}}$ mesons in two-photon collisions was measured by the L3 experiment at LEP. The data were collected at a centre-of-mass energy $\sqrt{s} = 189$ GeV with an integrated luminosity of $176.4 \mathrm{pb^{-1}}$. Differential cross sections of the process $\mathrm{e^+e^- \to D^{*\pm} X}$ are determined as functions of the transverse momentum and pseudorapidity of the $\mathrm{D^{*\pm}}$ mesons in the kinematic region 1 GeV $< p_{T}^{\mathrm{D^*}} < 5 $ GeV and $\mathrm{|\eta^{D^*}|} < 1.4$. The cross section integrated over this phase space domain is measured to be $132 \pm 22(stat.) \pm 26(syst.)$ pb. The differential cross sections are compared with next-to-leading order perturbative QCD calculations.
The measured cross sections, as a function of PT over the bin ranges and the differential cross sections after bin-centre corrections.
The measured cross sections, as a function of pseudorapidity over the bin ranges and the differential cross sections after bin-centre corrections.
Integrated cross section in the visible kinematic region.
New data are presented on charged particle pseudorapidity distributions for inelastic events produced at c.m. energies\(\sqrt s \)=200 and 900 GeV. The data were obtained at the CERN antiproton-proton Collider operated in a new pulsed mode. The rise of the central density ρ(0) at energies up to\(\sqrt s \)=900 GeV has been studied. A new form of central region scaling is found involving the densityρn(0) for charged multiplicityn, namely that the scaled central densityρn(0)/ρ(0) expressed as a function ofz=n/〈n〉 is independent ofs. Scaling in the fragmentation region holds to 10–20%, and the small amount of scalebreaking observed here could be accommodated within the framework suggested by Wdowcyk and Wolfendale to account for both accelerator and cosmic ray data.
.
.
.