Date

Collaboration

Subject_areas

Measurement of the dineutrino system kinematic variables in dileptonic top quark pair production in proton-proton collisions at$\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-TOP-24-001, 2025.
Inspire Record 3006250 DOI 10.17182/hepdata.153302

Differential top quark pair production cross sections are measured in the dilepton final states e$^+$e$^-$, $μ^+μ^-$, and e$^\pmμ^\mp$, as a function of kinematic variables of the two-neutrino system: the transverse momentum $p_\mathrm{T}^{νν}$ of the dineutrino system, the minimum distance in azimuthal angle between $\vec{p}_\mathrm{T}^{\,νν}$ and leptons, and in two dimensions in bins of both observables. The measurements are performed using CERN LHC proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded by the CMS detector between 2016 and 2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The measured cross sections are unfolded to the particle level using an unregularized least squares method. Results are compared with predictions by the standard model of particle physics, and found to be in agreement with theoretical calculations as well as Monte Carlo simulations.

43 data tables

Data and MC simulation yields after the event selection, combined for all data-taking periods and split by channels. The uncertainties on the expected yields include systematic and statistical uncertainties. The relative contribution in percent of each process to the total expected yield of a channel is given in parentheses.

Observed (black markers) and expected distributions of leading lepton $p_{T}$ after event selection. The hatched (grey) areas denote the systematic (total) uncertainties in the expected yields. Events from all data-taking periods and all channels are combined. The lower panel of each plot shows the ratio between observed and expected distributions. The last bin includes all events above the plotted range. The entry Background corresponds to the sum of all the SM predictions.

Observed (black markers) and expected distributions of leading jet $p_{T}$ after event selection. The hatched (grey) areas denote the systematic (total) uncertainties in the expected yields. Events from all data-taking periods and all channels are combined. The lower panel of each plot shows the ratio between observed and expected distributions. The last bin includes all events above the plotted range. The entry Background corresponds to the sum of all the SM predictions.

More…

Search for type-III seesaw heavy leptons in leptonic final states in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 988, 2022.
Inspire Record 2027687 DOI 10.17182/hepdata.114228

A search for the pair production of heavy leptons as predicted by the type-III seesaw mechanism is presented. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV, corresponding to 139 fb$^{-1}$ of integrated luminosity recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis focuses on final states with three or four electrons or muons from the possible decays of new heavy leptons via intermediate electroweak bosons. No significant deviations above the Standard Model expectation are observed; upper and lower limits on the heavy lepton production cross-section and masses are derived respectively. These results are then combined for the first time with the ones already published by ATLAS using the channel with two leptons in the final state. The observed lower limit on the mass of the type-III seesaw heavy leptons combining two, three and four lepton channels together is 910 GeV at the 95% confidence level.

25 data tables

Expected background yields and observed data after the background-only fit in the SRs.

Distribution of $m_{\mathrm{T},3l}$ in the ZL SR after the background-only fit. The uncertainty on the expected number of background events includes all statistical and systematic post-fit uncertainties with the correlations between various background sources taken into account.

Distribution of $m_{\mathrm{T},3l}$ in the ZL Veto SR after the background-only fit. The uncertainty on the expected number of background events includes all statistical and systematic post-fit uncertainties with the correlations between various background sources taken into account.

More…

Search for type-III seesaw heavy leptons in dilepton final states in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 218, 2021.
Inspire Record 1812090 DOI 10.17182/hepdata.95742

A search for the pair production of heavy leptons as predicted by the type-III seesaw mechanism is presented. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV, corresponding to 139 fb$^{-1}$ of integrated luminosity recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis focuses on the final state with two light leptons (electrons or muons) of different flavour and charge combinations, with at least two jets and large missing transverse momentum. No significant excess over the Standard Model expectation is observed. The results are translated into exclusion limits on heavy-lepton masses, and the observed lower limit on the mass of the type-III seesaw heavy leptons is 790 GeV at 95% confidence level.

10 data tables

Cross-sections of the type-III seesaw process for mass points used in the analysis. Branching ratios into at least two leptons are presented with the corresponding effective cross-section.

Expected and observed 95 % CLs exclusion limits for the type-III seesaw process with the corresponding one- and two-standard-deviation bands, showing the 95 % CL upper limit on the cross-section.

Selection efficiencies in percentage relative to the events with at least two leptons for signal mass points used in the analysis. The efficiency is defined as the ratio of expected signal events in a signal region compared with the number of expected events produced, for integrated luminosity 139 fb$^{-1}$.

More…