The production of final states involving one or more energetic photons from e + e − collisions is studied in a sample of 58.5 pb −1 of data recorded at a centre-of-mass energy of 183 GeV by the ALEPH detector at LEP. The e + e − → ν ν ̄ γ(γ) and e + e − → γγ(γ) cross sections are measured. The data are in good agreement with predictions based on the Standard Model and are used to set upper limits on the cross sections for anomalous photon production in the context of two supersymmetric models and for various extensions to QED. In particular, in the context of a super-light gravitino model a cross section upper limit of 0.38 pb is placed on the process e + e − → G ̃ G ̃ γ , allowing a lower limit to be set on the mass of the gravitino. Limits are also set on the mass of the lightest neutralino in Gauge Mediated Supersymmetry Breaking models. In the case of equal ee ∗ γ and ee γ couplings a 95% C.L. lower limit on M e ∗ of 250 GeV /c 2 is obtained.
No description provided.
No description provided.
We have searched for central production of a pair of photons with high transverse energies in $p\bar p$ collisions at $\sqrt{s} = 1.8$ TeV using $70 pb^{-1}$ of data collected with the D\O detector at the Fermilab Tevatron in 1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could rescatter pairs of nearly real photons into this final state via a box diagram. We observe no excess of events above background, and set lower 95% C.L. limits of $610, 870, or 1580 GeV/c^2$ on the mass of a spin 0, 1/2, or 1 Dirac monopole.
No description provided.
The shape of the transverse momentum distribution of W bosons (p_T(W)) produced in pbarp collisions at sqrt(s)= 1.8 TeV is measured with the DO detector at Fermilab. The result is compared to QCD perturbative and resummation calculations over the p_T(W) range from 0-200 GeV/c. The shape of the distribution is consistent with the theoretical prediction.
The first error is statistical, the first systematic (DSYS) error is the uncertainty in the background and efficiencies, the second is the systematic errorin the detector modelling.
An improved measurement of the forward-backward asymmetry in Z →b b ̄ decays is presented, based on a sample of 4.1 million hadronic Z decays collected by ALEPH between 1991 and 1995. Data are analysed as a function of polar angle of the event axis and b purity. The event tagging efficiency and mean b -jet hemisphere charge are measured directly from data. From the measured forward-backward jet charge asymmetry, the b quark asymmetry at s =m Z is determined to be: A b FB =0.1017±0.0038(stat.)±0.0032(syst.). In the context of the Standard Model this corresponds to a value of the effective weak mixing angle of sin 2 θ W eff =0.23109±0.00096.
Only statistical errors are given for sqrt(s) = 89.43 and 92.97 GeV.
The combination of the data on and off peak of Z-boson.
The combination of the data on and off peak of Z-boson.
The full statistics of hadronic Z decays collected with the ALEPH detector are analysed to measure, by three methods, the ratio, ${\rm R_c}$ , of the partial decay
No description provided.
Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.
Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.
Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.
Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.
A determination of the number of light neutrino families performed by measuring the cross section of single photon production in e + e − collision near the Z resonance is reported. From an integrated luminosity of 100 pb −1 , collected during the years 1991–94, we have observed 2091 single photon candidates with an energy above 1 GeV in the polar angular region 45°< θ γ <135°. From a maximum likelihood fit to the single photon cross section, the Z decay width into invisible particles is measured to be Γ inv =498±12 (stat) ±12 (sys) MeV . Using the Standard Model couplings of neutrinos to the Z, the number of light neutrino species is determined to be N ν =2.98±0.07(stat)±0.07(sys).
No description provided.
An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.
The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation CA/CF. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution y, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is 2.77±0.11±0.10. Due to non-perturbative effects, the data are below the expectation at small y. The transition from the perturbative to the non-perturbative domain appears at smaller y for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets.
Scaled energy distribution of charged hadrons produced in Quark jets in 'Y'topology 3-JET events.
Scaled energy distribution of charged hadrons produced in Gluon jets in 'Y'topology 3-JET events.
Scaled energy distribution of charged hadrons produced in Quark jets in 'Mercedes' topology 3-JET events.
A systematic study of the spectra and yields of K+ and K− is reported by experiment E866 as a function of centrality in Au+Au collisions at 11.6A GeV/c. The invariant transverse spectra for both kaon species are well described by exponentials in mt, with inverse slope parameters that are largest at midrapidity and which increase with centrality. The inverse slopes of the K+ spectra are slightly larger than the inverse slopes of the K− spectra. The kaon rapidity density peaks at midrapidity with the K+ distribution wider in rapidity than K−. The integrated total yields of K+ and K− increase nonlinearly and steadily with the number of projectile participants. The yield per participant for kaons is two to three times larger than the yield from N−N collisions. This enhancement suggests that the majority of kaons in central Au+Au reactions are produced in secondary hadronic collisions. There is no evidence for an onset of additional kaon production from a possible small volume of baryon-rich quark-gluon plasma. The differences between K+ and K− rapidity distributions and transverse spectra are consistent with a lower phase space for K− production due to a higher energy threshold. These differences also exclude simple thermal models that assume emission from a common equilibrated system.
In this case FRAGB=NUCLEAR FRAG + PROTONS.
In this case FRAGB = NUCLEAR FRAG + PROTONS.