Date

B* production in Z decays at LEP

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Phys.Lett.B 345 (1995) 589-597, 1995.
Inspire Record 381046 DOI 10.17182/hepdata.48342

The production of B ∗ mesons in Z decays has been measured at LEP with the L3 detector. A sample of Z → b b events was obtained by tagging muons in 1.6 million hadronic Z decays collected in 1991, 1992 and 1993. A signal with a peak value of E γ = 46.3 ± 1.9 (stat) MeV in the B rest frame energy spectrum was interpreted to come from the decay B ∗ → γB. The inclusive production ratio of B ∗ mesons relative to B mesons was determined from a fit to the spectrum to be N B ∗ (N B ∗ + N B ) = 0.76 ± 0.08 ± 0.06 , where the first error is statistical and the second is systematic.

1 data table

No description provided.


Measurement of W - photon couplings with CDF in p - anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 74 (1995) 1936-1940, 1995.
Inspire Record 377331 DOI 10.17182/hepdata.42429

We report on a study of W+ photon production in approximately 20 pb−1 of p−p¯ collisions at s=1.8 TeV recorded with the Collider Detector at Fermilab. Our results are in good agreement with standard model expectations and are used to obtain limits on anomalous CP-conserving WWγ couplings of −2.3<Δκ<2.2 for λ=0 and −0.7<λ<0.7 for Δκ=0 at 95% C.L. We obtain the same limits for CP-violating couplings. These results provide limits on the higher-order electromagnetic moments of the W boson of 0.8<gW<3.1 for qWe=1 and −0.6<qWe<2.7 for gW=2 at 95% C.L.

1 data table

E + MU combined. Limits on CP-conserving anomalous WWGAMMA couplings DELTA(K) and LAMBDA (see paper).


Precision measurement of the proton spin structure function g1(p).

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 74 (1995) 346-350, 1995.
Inspire Record 375737 DOI 10.17182/hepdata.19665

We have measured the ratio g1pF1p over the range 0.029<x<0.8 and 1.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized ammonia. An evaluation of the integral ∫01g1p(x, Q2)dx at fixed Q2=3 (GeV/c)2 yields 0.127±0.004(stat)±0.010(syst), in agreement with previous experiments, but well below the Ellis-Jaffe sum rule prediction of 0.160±0.006. In the quark-parton model, this implies Δq=0.27±0.10.

2 data tables

No description provided.

Values of G1 computed assuming G1/F1 is independent of Q**2 and using a fixed Q**2 of 3 GeV**2.


Photoproduction of J / psi mesons at HERA

The H1 collaboration Ahmed, T. ; Aid, S. ; Andreev, V. ; et al.
Phys.Lett.B 338 (1994) 507-518, 1994.
Inspire Record 376566 DOI 10.17182/hepdata.45103

We present a study of J ψ meson production in collisions of 26.7 GeV electrons with 820 GeV protons, performed with the H1-detector at the HERA collider at DESY. The J ψ mesons are detected via their leptonic decays both to electrons and muons. Requiring exactly two particles in the detector, a cross section of σ(ep → J ψ X) = (8.8±2.0±2.2) nb is determined for 30 GeV ≤ W γp ≤ 180 GeV and Q 2 ≲ 4 GeV 2 . Using the flux of quasi-real photons with Q 2 ≲ 4 GeV 2 , a total production cross section of σ ( γp → J / ψX ) = (56±13±14) nb is derived at an average W γp =90 GeV. The distribution of the squared momentum transfer t from the proton to the J ψ can be fitted using an exponential exp(− b ∥ t ∥) below a ∥ t ∥ of 0.75 GeV 2 yielding a slope parameter of b = (4.7±1.9) GeV −2 .

4 data tables

No description provided.

No description provided.

QED background subtracted.

More…

A Precision measurement of the prompt photon cross-section in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 2662-2666, 1994.
Inspire Record 375582 DOI 10.17182/hepdata.19680

A prompt photon cross section measurement from the Collider Detector at Fermilab experiment is presented. Detector and trigger upgrades, as well as 6 times the integrated luminosity compared with our previous publication, have contributed to a much more precise measurement and extended PT range. As before, QCD calculations agree qualitatively with the measured cross section, but the data has a steeper slope than the calculations.

1 data table

Note that the sytematic uncertainties are approximately 100 pct correlated bin to bin.


Evidence for top quark production in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.Lett. 73 (1994) 225-231, 1994.
Inspire Record 373362 DOI 10.17182/hepdata.42494

We summarize a search for the top quark with the Collider Detector at Fermilab (CDF) in a sample of $\bar{p}p$ collisions at $\sqrt{s}$= 1.8 TeV with an integrated luminosity of 19.3pb$~{-1}$. We find 12 events consistent with either two $W$ bosons, or a $W$ boson and at least one $b$ jet. The probability that the measured yield is consistent with the background is 0.26\%. Though the statistics are too limited to establish firmly the existence of the top quark, a natural interpretation of the excess is that it is due to $t\bar{t}$ production. Under this assumption, constrained fits to individual events yield a top quark mass of $174 \pm 10~{+13}_{-12}$ GeV/c$~2$. The $t\bar{t}$ production cross section is measured to be $13.9~{+6.1}_{-4.8}$pb. (Submitted to Physical Review Letters on May 16, 1994).

1 data table

No description provided.


W boson + jet angular distribution in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 2296-2300, 1994.
Inspire Record 374152 DOI 10.17182/hepdata.42492

The W+jet angular distribution is measured using W→eν events recorded with the Collider Detector at Fermilab (CDF) during the 1988-89 and 1992-93 Tevatron runs. The data agree well with both a leading order and a next-to-leading order theoretical prediction. The shape of the angular distribution is similar to that observed in photon + jet data and significantly different from that observed in dijet data.

2 data tables

Data normalized to 1 in the cos(theta) range -0.6 to 0.6.

Data normalized to 1 in the abs(cos(theta)) range <0.3.


Global transverse energy distributions in Si + Al, Au at 14.6-A/GeV/c and Au + Au at 11.6-A.GeV/c

The E-802 collaboration Ahle, L. ; Akiba, Y. ; Beavis, D. ; et al.
Phys.Lett.B 332 (1994) 258-264, 1994.
Inspire Record 374156 DOI 10.17182/hepdata.28663

Measurements of the global transverse energy distributions dσ / dE T and dE T / dη using the new AGS beam of 197 Au at 11.6 A GeV/ c on a Au target, as well as a beam of 28 Si at 14.6 A GeV/ c on Al and Au targets, are presented for a leadglass detector with acceptance 1.3 ≤ η ≤ 2.4 and 0 ≤ φ < 2 π . The dσ / dE T spectra are observed to have different shapes for the different systems and simple energy rescaling does not account for the projectile dependence. The Au+Au dσ / dE T spectrum is satisfactorily constructed from the upper edge of Si+Au by the geometric Wounded Projectile Nucleon Model after applying a correction for the beam energy.

6 data tables

Incident energy is 14.6 GeV/nucleon.

Incident energy is 14.6 GeV/nucleon.

Incident energy is 11.6 GeV/nucleon.

More…

Evidence for top quark production in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.D 50 (1994) 2966-3026, 1994.
Inspire Record 372952 DOI 10.17182/hepdata.50086

We present the results of a search for the top quark in 19.3 pb−1 of p¯p collisions at √s =1.8 TeV. The data were collected at the Fermilab Tevatron collider using the Collider Detector at Fermilab (CDF). The search includes standard model tt¯ decays to final states eeνν¯, eμνν¯, and μμνν¯ as well as e+ν+jets or μ+ν+jets. In the (e,μ)+ν+jets channel we search for b quarks from t decays via secondary vertex identification and via semileptonic decays of the b and cascade c quarks. In the dilepton final states we find two events with a background of 0.56−0.13+0.25 events. In the e,μ+ν+jets channel with a b identified via a secondary vertex, we find six events with a background of 2.3±0.3. With a b identified via a semileptonic decay, we find seven events with a background of 3.1±0.3. The secondary vertex and semileptonic-decay samples have three events in common. The probability that the observed yield is consistent with the background is estimated to be 0.26%. The statistics are too limited to firmly establish the existence of the top quark; however, a natural interpretation of the excess is that it is due to tt¯ production. We present several cross-checks. Some support this hypothesis; others do not. Under the assumption that the excess yield over background is due to tt¯, constrained fitting on a subset of the events yields a mass of 174±10−12+13 GeV/c2 for the top quark. The tt¯ cross section, using this top quark mass to compute the acceptance, is measured to be 13.9−4.8+6.1 pb.

1 data table

Cross section refers to top quark mass equals 174 +- 10 +13 - 12 GeV. Two events in the dilepton final states and six events in the electron or muon nu jets final states.


K0 production in one prong tau decays

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 332 (1994) 219-227, 1994.
Inspire Record 373752 DOI 10.17182/hepdata.68011

From a sample of about 75000 τ decays identified with the ALEPH detector, K 0 production in 1-prong hadronic decays is investigated by tagging the K L 0 component in a hadronic calorimeter. Results are given for the final states ν τ h − K 0 and ν τ h − π 0 K 0 where the h − is separated into π and K contributions by means of the dE / dx measurement in in the central detector. The resulting branching ratios are: ( Bτ → ν τ π − K 0 ) = (0.88±0.14±0.09)%, ( Bτ → ν τ K − K 0 ) = (0.29±0.12±0.03)%, ( Bτ → ν τ π − π 0 K 0 ) = (0.33±0.14±0.07)% aand ( Bτ → ν τ K − π 0 K 0 ) = (0.05±0.05±0.01)%. The K ∗ decay rate in the K 0 π channel agrees with that in the Kπ 0 mode: the combined value for the branching ratio is (Bτ → ν τ K ∗− ) = (1.45±0.13±0.11)% .

1 data table

Invariant mass distribution for the $K^0\pi$ system data. The numbers have been read from the plot in the paper.