We present the first measurement of the electron angular distribution parameter alpha_2 in W to e nu events produced in proton-antiproton collisions as a function of the W boson transverse momentum. Our analysis is based on data collected using the D0 detector during the 1994--1995 Fermilab Tevatron run. We compare our results with next-to-leading order perturbative QCD, which predicts an angular distribution of (1 +/- alpha_1 cos theta* + alpha_2 cos^2 theta*), where theta* is the polar angle of the electron in the Collins-Soper frame. In the presence of QCD corrections, the parameters alpha_1 and alpha_2 become functions of p_T^W, the W boson transverse momentum. This measurement provides a test of next-to-leading order QCD corrections which are a non-negligible contribution to the W boson mass measurement.
Angular distributions of the emitted charged lepton is fitted to the formula d(sig)/d(pt**2)/dy/d(cos(theta*)) = const*(1 +- alpha_1*cos(theta*) + alpha_2*(cos(theta*))**2). The angle theta* is measured in the Collins-Soper frame. alpha_1 velues are calculated based on the measured PT(W) of each event. Possible variations of alpha_1 are treated as a source of systematic uncertainty.
We present a measurement of the electron charge asymmetry in ppbar->W+X->enu+X events at a center of mass energy of 1.96 TeV using 0.75 fb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. The asymmetry is measured as a function of the electron transverse momentum and pseudorapidity in the interval (-3.2, 3.2) and is compared with expectations from next-to-leading order calculations in perturbative quantum chromodynamics. These measurements will allow more accurate determinations of the proton parton distribution functions.
Folded electron charged asymmetry.
Using data from Fermilab fixed-target experiment E791, we have measured particle-antiparticle production asymmetries for lambda zero, cascade minus, and omega minus hyperons in pi minus-nucleon interactions at 500 GeV/c. The asymmetries are measured as functions of Feynman-x (x_F) and pt^2 over the ranges of -0.12 GE x_F LE 0.12 and 0 GE pt^2 LE 4 (GeV/c)^2. We find substantial asymmetries, even at x_F = 0. We also observe leading-particle- type asymmetries which qualitatively agree with theoretical predictions.
No description provided.
No description provided.
No description provided.
We present a measurement of the forward-backward charge asymmetry ($A_{FB}$) in $p\bar{p} \to Z/\gamma^{*}+X \to e^+e^-+X$ events at a center-of-mass energy of 1.96 TeV using 1.1 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron collider. $A_{FB}$ is measured as a function of the invariant mass of the electron-positron pair, and found to be consistent with the standard model prediction. We use the $A_{FB}$ measurement to extract the effective weak mixing angle sin$^2\Theta^{eff}_W = 0.2327 \pm 0.0018 (stat.) \pm 0.0006 (syst.)$.
Unfolded forward-backward asymmetry as a function of the di-electron mass.
We present a measurement of asymmetries in the production of $\Lambda_c^+$ and $\Lambda_c^-$ baryons in 500 GeV/c $\pi^-$--nucleon interactions from the E791 experiment at Fermilab. The asymmetries were measured as functions of Feynman x ($x_F$) and transverse momentum squared ($p_T^2$) using a sample of $1819 \pm 62$ $\Lambda_c$'s observed in the decay channel $\Lambda_c \to pK^-\pi^+$. We observe more $\Lambda_c^+$ than $\Lambda_c^-$ baryons, with an asymmetry of $(12.7\pm3.4\pm1.3) %$ independent of $x_F$ and $p_T^2$ in our kinematical range $(-0.1 < x_F < 0.6$ and $0.0 < p_T^2 < 8.0 (GeV/c)^2$). This $\Lambda_c$ asymmetry measurement is the first with data in both the positive and negative $x_F$ regions.
No description provided.
No description provided.
An analysis of the forward-backward asymmetry in Z0 decays using data from the Collider Detector at Fermilab at √s =1.8 TeV yields AFB=[5.2±5.9(stat)±0.4(syst)]% and sin2θ¯W =0.228−0.015+0.017(stat)±0.002(syst).
Asymmetry after background and QCD corrections.
By combining results from the MARK-J at PETRA on Bhabha scattering, μ + μ - and τ + τ - production with recent world data from neutrino-electron scattering experiments, we determine unique values for the leptonic weak neutral current coupling constants g V and g A in the framework of electroweak models containing a single Z 0 . In contrast to previous analyses, we only use data from purely leptonic interactions, and therefore avoid the inherent uncertainties resulting from the use of hadronic targets. From the MARK-J data alone in the context of the standard SU(2) ⊗ U (1) model of Glashow, Weinberg and Salam, we find sin 2 θ W =0.24±0.11.
No description provided.
The D0 collaboration has performed a study of spin correlation in tt-bar production for the process tt-bar to bb-bar W^+W^-, where the W bosons decay to e-nu or mu-nu. A sample of six events was collected during an exposure of the D0 detector to an integrated luminosity of approximately 125 pb^-1 of sqrt{s}=1.8 TeV pp-bar collisions. The standard model (SM) predicts that the short lifetime of the top quark ensures the transmission of any spin information at production to the tt-bar decay products. The degree of spin correlation is characterized by a correlation coefficient k. We find that k>-0.25 at the 68% confidence level, in agreement with the SM prediction of k=0.88.
No description provided.
We have measured the properties of Z 0 → b b decays using a sample of 944 inclusive muon events, corresponding to 18 000 hadron events obtained with the L3 detector at LEP. We measured the partial decay width of the Z 0 into b b , Γ b b =353±48 MeV , and we determined the vector coupling of the Z 0 to the b quark; g rmv 2 (b)=0.095±0.047. We measured the forward-backward charge asymmetry in e + e − → b b events at √ s ≈ M v , and obtained A b b =13.3±9.9% .
BOTTOM quark charge asymmetry measurement.
The forward-backward asymmetry in e + e − → b b at s = 57.9 GeV and the b-quark branching ratio to muons have been measured using neural networks. Unlike previous methods for measuring the b b forward-backward asymmetry where the estimated background from c -quark decays and other sources are subtracted, here events are categorized as either b b or non- b b events by neural networks based on event-by-event characteristics. The determined asymmetry is −0.429 ± 0.044 (stat) ± 0.047 (sys) and is consistent with the prediction of the standard model. The measured B B mixing parameter is 0.136 ± 0.037 (stat) ± 0.040 (sys) ± 0.002 (model) and the measured b-quark branching ratio to muons is 0.122 ± 0.006 (stat) ± 0.007 (sys).
.