We report the first measurement of the ratio R=(σe+e−→hadrons)(σe+e−→μ+μ−) (with negligible τ-lepton contribution) at a center-of-mass energy s=13 GeV and s=17 GeV, from the just finished electron-positron colliding-beam facility PETRA. The detector, MARK-J, has an approximately 4π solid angle and measures γ, e, μ, and charged and neutral hadrons simultaneously. Our results yield R(s=17 GeV)=4.9±0.6 (statistical) ±0.7 (systematic error), and R(s=13 GeV)=4.6±0.5 (statistical) ±0.7 (systematic error). The ratio R(s=17 GeV)R(s=13 GeV) is 1.08±0.18.
No description provided.
No description provided.
This paper reports measurements of the hadrons produced in the inelastic scattering of 147-GeV muons by protons and deuterons in an experiment carried out at Fermi National Accelerator Laboratory. Both the scattered muon and the hadrons were measured in a large spectrometer. Properties of the hadron spectra are presented for proton, deuteron, and neutron targets and compared with theoretical models and with hadron spectra from related processes. Emphasis is placed on the quark-parton model and the data are found to be in substantial agreement with it. The average transverse momentum of the hadrons with respect to the virtual photon direction shows no dependence on the muon scattering variables. The data display "jet behavior" of the inclusive hadrons comparable to that found in e+e− annihilations.
No description provided.
No description provided.
From a muon-proton scattering experiment with a streamer chamber at the Stanford Linear Accelerator we present results in the ranges 0.3<Q2<4.7 GeV2 and 1.7<W<4.7 GeV for the reactions μ+p→μpV where V is a vector meson (ρ0, ω, or φ). It is shown that in ρ production the skewing parameter and the longitudinal-transverse ratio change significantly as Q2 increases above 1 GeV2. The cross section for ρ0 production as a function of Q2 falls below the vector-meson-dominance prediction. The ratio of the cross section for exclusive vector-meson production to the total cross section falls by a factor of 10 between photoproduction and a Q2 of 2 GeV2, yet the ratio of ω to ρ production remains constant at the photoproduction value out to Q2>2 GeV2.
THE ABSOLUTE TOTAL CROSS SECTION IS FROM A FIT TO THE MIT-SLAC ELECTRON SCATTERING DATA BY W. ATWOOD AND S. STEIN.
No description provided.
FOR 0.6 < M(PI+ PI-) < 0.9 GEV, USING THE METHOD OF MOMENTS.
Results on the protron structure function, F2, are presented for 0.3<q2<80.0 GeV2 and 10<ν<200 GeV. The results support the conclusions of earlier work at 97 and 147 GeV that scaling is violated. A new value for R=σSσT=0.44±0.25 has been obtained using all the Fermilab proton measurements.
No description provided.
We have measured the inclusive electroproduction of positive and negative hadrons in the quark fragmentation region using the streamer chamber at DESY. Data are presented in terms of the variable z p = p / v in the kinematic region 1.8 < W < 2.8 GeV and 0.3 < Q 2 < 1.4 GeV 2 . The positive hadron distributions contain a strong proton component. After subtraction of the proton component and elastic rho events, the distribution (1/ σ tot ) d σ /d z p for positive and negative hadrons agrees well with the corresponding distribution from e + e − annihilation (DORIS data). This behaviour supports the validity of the quark-parton model at surprisingly low Q 2 and W .
No description provided.
Electroproduction of hadrons is studied in the kinematic region W < 2.8 GeV and 0.3 < Q 2 < 1.4 GeV 2 using the DESY streamer chamber. Prong cross sections, charged-particle multiplicities and inclusive π − distributions are presented. The average charged multiplicity is found to be independent of Q 2 in the Q 2 range studied here; however it is lower than in photoproduction. The fraction of forward π − is found to be significantly less in electroproduction than in photoproduction. The 〈 p ⊥ 2 〉 for inclusive π − is, for all x values, similar to that found in photoproduction.
No description provided.
No description provided.
No description provided.
A clear, prompt dimuon signal has been observed in a low-statistics streamer-chamber experiment with 16-GeV/c πp interactions. The good mass resolution makes it possible to identify the contributions from ρ and ω decays and η and ω Dalitz decays. An excess of events is observed in the mass region ∼400-600 MeV which is not accounted for by the above-mentioned decays.
The data with PI+- beam obtained from the combination of PI+ and PI- beams.
A bubble-chamber experiment based on 304 000 events of p¯p interactions at 2.32 GeV/c is described. The film was automatically scanned and measured by the POLLY II system. Details of the data-analysis methods are given. We report results on cross sections for constrained final states, tests of C invariance, and inclusive pion and ρ0 multiplicity parameters for annihilation final states.
Axis error includes +- 4/4 contribution.
Axis error includes +- 4/4 contribution.
We present the fractional energy distributions for positive and negative hadrons produced in muon-proton and muon-neutron scattering, and ensuing charge ratios for the photon fragmentation region. Data presented for a center-of-mass energy range 2.8<W<4.5 GeV and a virtual-photon mass-squared range 0.5≤Q2≤4.5 GeV2 indicate an overall equality of summed structure functions for neutron and proton targets, which exhibit approximate independence of Q2 and ω′, Implications in terms of quark-fragmentation ideas are discussed.
No description provided.
No description provided.
No description provided.
An analysis of a data sample of 1296 events of the reaction p p → K + K − π + π − at 2.32 GeV/ c is presented. The reaction cross section is 300 ± 20 μb . A number of tests of C conservation were made with careful attention to possible systematic errors, yielding no clear evidence of C violation. Various quasi two-body and quasi three-body final states contributing to this reaction were studied. The final state φπ + π − appears to be produced via a Zweig's rule violating mechanism. An analysis of the quasi three-body final state, K ∗0 K − π + (with K ∗0 → K + π − ) plus charge conjugate, whose cross section is 84 ± 12 μ b, is given. The properties of this final state are compared with expectations based on a simple baryon exchange model, and poor agreement is found. A quark model allows a successful qualitative interpretation of the properties of this three-body final state.
INCOHERENT BREIT-WIGNER PLUS PHASE SPACE FIT TO RESONANCE MASS SPECTRA. THE EQUAL CROSS SECTIONS FOR CHARGE CONJUGATE FINAL STATES ARE NOT TABULATED.