The spectra of strange hadrons are measured in proton-proton collisions, recorded by the CMS experiment at the CERN LHC, at centre-of-mass energies of 0.9 and 7 TeV. The K^0_s, Lambda, and Xi^- particles and their antiparticles are reconstructed from their decay topologies and the production rates are measured as functions of rapidity and transverse momentum. The results are compared to other experiments and to predictions of the PYTHIA Monte Carlo program. The transverse momentum distributions are found to differ substantially from the PYTHIA results and the production rates exceed the predictions by up to a factor of three.
The rapidity production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The transverse momentum production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The rapidity production spectra per NSD event spectra for LAMBDA mesons at 0.9 and 7 TeV.
The production of J/psi mesons is studied in pp collisions at sqrt(s)=7 TeV with the CMS experiment at the LHC. The measurement is based on a dimuon sample corresponding to an integrated luminosity of 314 inverse nanobarns. The J/psi differential cross section is determined, as a function of the J/psi transverse momentum, in three rapidity ranges. A fit to the decay length distribution is used to separate the prompt from the non-prompt (b hadron to J/psi) component. Integrated over J/psi transverse momentum from 6.5 to 30 GeV/c and over rapidity in the range |y| < 2.4, the measured cross sections, times the dimuon decay branching fraction, are 70.9 \pm 2.1 (stat.) \pm 3.0 (syst.) \pm 7.8(luminosity) nb for prompt J/psi mesons assuming unpolarized production and 26.0 \pm 1.4 (stat.) \pm 1.6 (syst.) \pm 2.9 (luminosity) nb for J/psi mesons from b-hadron decays.
Total cross section within the kinematic limits for prompt and non-prompt J/PSI production times branching ratio into MU+ MU-, assuming zero polarizartion. The second systematic error is the luminosity uncertainty.
Differential inclusive cross J/PSI section for the |rapidity| range 0 to 1.2 for each prompt J/PSI polarization scenario considered.
Differential inclusive cross J/PSI section for the |rapidity| range 1.2 to 1.6 for each prompt J/PSI polarization scenario considered.
Using 13.6/fb of continuum two-jet e+e- -> ccbar events collected with the CLEO detector, we have searched for baryon number correlations at the primary quark level. We have measured the likelihood for a /\c+ charmed baryon to be produced in the hemisphere opposite a /\c- relative to the likelihood for a /\c+ charmed baryon to be produced opposite an anticharmed meson Dbar; in all cases, the reconstructed hadrons must have momentum greater than 2.3 GeV/c. We find that, given a /\c- (reconstructed in five different decay modes), a /\c+ is observed in the opposite hemisphere (0.72+/-0.11)% of the time (not corrected for efficiency). By contrast, given a Dbar in one hemisphere, a /\c+ is observed in the opposite hemisphere only (0.21+/-0.02)% of the time. Normalized to the total number of either /\c- or Dbar ``tags'', it is therefore 3.52+/-0.45+/-0.42 times more likely to find a /\c+ opposite a /\c- than a Dbar meson. This enhancement is not observed in the JETSET 7.3 e+e- -> ccbar Monte Carlo simulation.
Statistal errors only.
Statistal errors only.
Statistal errors only.
We have measured the charge asymmetry in like-sign dilepton yields from B^0 B^0-bar meson decays using the CLEO detector at the Cornell Electron Storage Ring. We find a_ll = [N(l+l+) - N(l-l-)]/[N(l+l+) + N[l-l-)] = +0.013 +/- 0.050 +/- 0.005 . We combine this result with a previous, independent measurement and obtain Re(epsilon_B)/(1+|epsilon_B|^2) = +0.0035 +/- 0.0103 +/- 0.0015 (uncertainties are statistical and systematic, respectively) for the CP impurity parameter, epsilon_B.
CONST(NAME=EPSILON) is CP impurity parameter.
Using data recorded with the CLEO II and CLEO II.V detector configurations at the Cornell Electron Storage Rings, we report the first observation and mass measurement of the $\Sigma_c^{*+}$ charmed baryon, and an updated measurement of the mass of the $\Sigma_c^+$ baryon. We find $M(\Sigma_c^{*+})-M(\Lambda_c^+)$= 231.0 +- 1.1 +- 2.0 MeV, and $M(\Sigma_c^{+})-M(\Lambda_c^+)$= 166.4 +- 0.2 +- 0.3 MeV, where the errors are statistical and systematic respectively.
No description provided.
We have measured the probability, n(g->cc~), of a gluon splitting into a charm-quark pair using 1.7 million hadronic Z decays collected by the L3 detector. Two independent methods have been applied to events with a three-jet topology. One method relies on tagging charmed hadrons by identifying a lepton in the lowest energy jet. The other method uses a neural network based on global event shape parameters. Combining both methods, we measure n(g->cc~)= [2.45 +/- 0.29 +/- 0.53]%.
No description provided.
An inclusive measurement of the average multiplicity of b b pairs from gluons, g b b , in hadronic Z 0 events collected by the DELPHI experiment at LEP, is presented. A counting technique, based on jet b -tagging in 4-jet events, has been used. Looking for secondary bottom production in events with production of any primary flavour, by requiring two b -tagged jets in well defined topological configurations, gave g b b = (0.21 ± 0.11 ( stat ) ± 0.09 ( syst ))% . This result was checked with a different method designed to select events with four b quarks in the final state. Agreement within the errors was found.
No description provided.
A study of the particle multiplicity between jets with large rapidity separation has been performed using the D\O\ detector at the Fermilab Tevatron $p\bar{p}$ Collider operating at $\sqrt{s}=1.8$\,TeV. A significant excess of low-multiplicity events is observed above the expectation for color-exchange processes. The measured fractional excess is $1.07 \pm 0.10({\rm stat})~{ + 0.25}_{- 0.13}({\rm syst})\%$, which is consistent with a strongly-interacting color-singlet (colorless) exchange process and cannot be explained by electroweak exchange alone. A lower limit of $0.80\%$ (95\% C.L.) is obtained on the fraction of dijet events with color-singlet exchange, independent of the rapidity gap survival probability.
'Opposite-side' jets with a large pseudorapidity separation. A cone algorithm with radius R = sqrt(d(etarap)**2+d(phi)**2)=0.7 is used for jet funding. Double negative binomial distribution (NBD) is used to parametrize the color-exchange component of the opposite-side multiplicity distribution betweeb jets. A result of extrapolation to the zero multiplicity point. Quoted systematic error is a result of combining in quadrature of the systematic errors described above.
The production of B ∗ mesons in Z decays has been measured at LEP with the L3 detector. A sample of Z → b b events was obtained by tagging muons in 1.6 million hadronic Z decays collected in 1991, 1992 and 1993. A signal with a peak value of E γ = 46.3 ± 1.9 (stat) MeV in the B rest frame energy spectrum was interpreted to come from the decay B ∗ → γB. The inclusive production ratio of B ∗ mesons relative to B mesons was determined from a fit to the spectrum to be N B ∗ (N B ∗ + N B ) = 0.76 ± 0.08 ± 0.06 , where the first error is statistical and the second is systematic.
No description provided.
Antiproton production cross sections have been measured for minimum bias and central Si+Al and Si+Au collisions at 14.6 A GeV c . The data presented cover the range of transverse momentum from 0.3 to 1.2 GeV c and lab rapidities from 1.1 to 1.7 units. The relative p π − and p K − yields are found to be the smallest for the heaviest system measured, central Si+Au collisions. For these collisions, the p π − ratio, determined from integrated yields for 1.1⩽ y ⩽1.7, is (0.84±0.07)×10 −3 . In the same rapidity interval, the average antiproton inverse m ⊥ slope is 141±14 MeV for central Si+Al and central Si+Au collisions.
Definition of the CENTRAL and MINIMUM BIAS events see text.
Definition of the CENTRAL and MINIMUM BIAS events see text.