Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 82 (2010) 034001, 2010.
Inspire Record 849042 DOI 10.17182/hepdata.55734

We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.

15 data tables

Drell-Yan events. Charged particle density in the toward, transverse and away regions.

Drell-Yan events. Charged particle density in the transMAX, transMIN and transDIF regions.

Drell-Yan events. Charged particle PTsum density in the toward, transverse and away regions.

More…

Measurement of direct photon pair production cross sections in ppbar collisions at sqrt(s)=1.96 TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 690 (2010) 108-117, 2010.
Inspire Record 846997 DOI 10.17182/hepdata.54534

We present a measurement of direct photon pair production cross sections using 4.2 fb-1 of data collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider. We measure single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons, as well as the double differential cross sections considering the last three kinematic variables in three diphoton mass bins. The results are compared with different perturbative QCD predictions and event generators.

13 data tables

Single differential cross section DSIG/DM.

Single differential cross section DSIG/DPT.

Single differential cross section DSIG/DPHI.

More…

Measurement of the Underlying Event Activity in Proton-Proton Collisions at 0.9 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 70 (2010) 555-572, 2010.
Inspire Record 857644 DOI 10.17182/hepdata.55126

A measurement of the underlying activity in scattering processes with transverse momentum scale in the GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged hadron production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged hadrons with pseudorapidity eta < 2, p_T > 0.5 GeV/c, and azimuthal direction transverse to that of the leading object.

7 data tables

Average multiplicity of charged particles per unit of pseudorapidity as a function of pseudorapidity for events with leading track-jet transverse momenta > 1 and > 3 GeV. Statistical errors only.

Average scalar sum of the transverse momenta of charged particles per unit of pseusdorapidity and per radian as a function of DELTA(PHI) for events with leading track-jet transverse momenta > 1 and > 2 GeV. Statistical errors only. Typical systematic error of 1.8 PCT at a leading track-jet PT of 3.5 GeV.

The average multiplicity and average scalar sum of transverse momenta of charge particles per unit of pseudorapidity and per radian as a function of the leading track transverse momenta. Statistical errors only. Typical systematic error of 1.8 PCT at a leading track-jet PT of 3.5 GeV.

More…

Measurement of Particle Production and Inclusive Differential Cross Sections in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Akimoto, T. ; et al.
Phys.Rev.D 79 (2009) 112005, 2009.
Inspire Record 817466 DOI 10.17182/hepdata.52134

We report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.

3 data tables

Charged particle invariant distribution as a function of PT. This data is that given in the erratum with the systematic errors read from the plot.

Dependance of the average track PT on the event multiplicity.

The differential charged particle distribution as a function of the summed ET of charged particles.


Measurement of D* Mesons in Jets from p+p Collisions at sqrt{s} = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 79 (2009) 112006, 2009.
Inspire Record 810426 DOI 10.17182/hepdata.45861

We report the measurement of charged $D^*$ mesons in inclusive jets produced in proton-proton collisions at a center of mass energy $\sqrt{s}$ = 200 GeV with the STAR experiment at RHIC. For $D^{*}$ mesons with fractional momenta $0.2 < z < 0.5$ in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be $N(D^{*+}+D^{*-})/N(\mathrm{jet}) = 0.015 \pm 0.008 (\mathrm{stat}) \pm 0.007 (\mathrm{sys})$. This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.

2 data tables

D*+-/jet azimuthal correlations. Delta Phi represents the difference in azimuthal angle between D*+- (of 2<Pt<10 GeV/c) and the jet's (of 8<Pt<20 GeV/c) axis.

Production rate of D*+- mesons with fractional longitudinal momenta 0.2<z<0.5 (z = Pl(D*+-)/Ejet, Pl is the momentum projection on the jet axis and Ejet is the total jet energy) in inclusive jets of 11.5 Gev mean transverse energy.


Deeply virtual and exclusive electroproduction of omega mesons.

The CLAS collaboration Morand, L. ; Dore, D. ; Garcon, M. ; et al.
Eur.Phys.J.A 24 (2005) 445-458, 2005.
Inspire Record 681604 DOI 10.17182/hepdata.43499

The exclusive omega electroproduction off the proton was studied in a large kinematical domain above the nucleon resonance region and for the highest possible photon virtuality (Q2) with the 5.75 GeV beam at CEBAF and the CLAS spectrometer. Cross sections were measured up to large values of the four-momentum transfer (-t < 2.7 GeV2) to the proton. The contributions of the interference terms sigma_TT and sigma_TL to the cross sections, as well as an analysis of the omega spin density matrix, indicate that helicity is not conserved in this process. The t-channel pi0 exchange, or more generally the exchange of the associated Regge trajectory, seems to dominate the reaction gamma* p -> omega p, even for Q2 as large as 5 GeV2. Contributions of handbag diagrams, related to Generalized Parton Distributions in the nucleon, are therefore difficult to extract for this process. Remarkably, the high-t behaviour of the cross sections is nearly Q2-independent, which may be interpreted as a coupling of the photon to a point-like object in this kinematical limit.

85 data tables

Total cross sections and interference terms (TT and TL).

Differential cross sections DSIG/DT for Q**2 = 1.725 GeV**2 and W = 2.77 GeV.

Differential cross sections DSIG/DT for Q**2 = 1.752 GeV**2 and W = 2.48 GeV.

More…

Measurement of the cross section for prompt diphoton production in p anti-p collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Acosta, D. ; Adelman, J. ; Affolder, T. ; et al.
Phys.Rev.Lett. 95 (2005) 022003, 2005.
Inspire Record 667384 DOI 10.17182/hepdata.41865

We report a measurement of the rate of prompt diphoton production in $p\bar{p}$ collisions at $\sqrt{s}=1.96 ~\hbox{TeV}$ using a data sample of 207 pb$^{-1}$ collected with the upgraded Collider Detector at Fermilab (CDF II). The background from non-prompt sources is determined using a statistical method based on differences in the electromagnetic showers. The cross section is measured as a function of the diphoton mass, the transverse momentum of the diphoton system, and the azimuthal angle between the two photons and is found to be consistent with perturbative QCD predictions.

3 data tables

Cross section as a function of the diphoton mass.

Cross section as a function of the diphoton transverse momentum.

Cross section as a function of the diphoton azimuthal angle difference.


Study of hadronic final states from double tagged gamma gamma events at LEP.

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
CERN-EP-2003-025, 2003.
Inspire Record 619958 DOI 10.17182/hepdata.49702

The interaction of virtual photons is investigated using double tagged gammagamma events with hadronic final states recorded by the ALEPH experiment at e^+e^- centre-of-mass energies between 188 and 209 GeV. The measured cross section is compared to Monte Carlo models, and to next-to-leading-order QCD and BFKL calculations.

10 data tables

Differential cross section as a function of the relative energy of the scattered electrons.

Differential cross section as a function of the polar angle THETA of the scattered electrons.

Differential cross section as a function of the virtuality Q**2 of the photons.

More…

The b anti-b production cross-section and angular correlations in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Lett.B 487 (2000) 264-272, 2000.
Inspire Record 499943 DOI 10.17182/hepdata.42088

We present measurements of the b-bbar production cross section and angular correlations using the D0 detector at the Fermilab Tevatron p-pbar Collider operating at sqrt(s) = 1.8 TeV. The b quark production cross section for |y(b)|<1.0 and p_T(b)>6 GeV/c is extracted from single muon and dimuon data samples. The results agree in shape with the next-to-leading order QCD calculation of heavy flavor production but are greater than the central values of these predictions. The angular correlations between b and bbar quarks, measured from the azimuthal opening angle between their decay muons, also agree in shape with the next-to-leading order QCD prediction.

3 data tables

No description provided.

The errors are combinations of statistical and systematic uncertainties.

The distribution of MU+ MU- azimuthal angle difference.


The Azimuthal decorrelation of jets widely separated in rapidity

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 77 (1996) 595-600, 1996.
Inspire Record 416886 DOI 10.17182/hepdata.42315

This study reports the first measurement of the azimuthal decorrelation between jets with pseudorapidity separation up to five units. The data were accumulated using the D\O\ detector during the 1992--1993 collider run of the Fermilab Tevatron at $\sqrt{s}=$ 1.8 TeV. These results are compared to next--to--leading order (NLO) QCD predictions and to two leading--log approximations (LLA) where the leading--log terms are resummed to all orders in $\alpha_{\scriptscriptstyle S}$. The final state jets as predicted by NLO QCD show less azimuthal decorrelation than the data. The parton showering LLA Monte Carlo {\small HERWIG} describes the data well; an analytical LLA prediction based on BFKL resummation shows more decorrelation than the data.

3 data tables

Distribution of the pseudorapidity interval of the two jets at the extremes of pseudorapidity. Data are read from the graph and the errors are statistical only.

Normalized distributions of the azimuthal angle difference of the two jets at the extremes of pseudorapidity in 3 pseudorapididity difference intervals. Data are read from the graph and the errors are statistical only.

The correlation between the PHI and ETARAP difference distributions as used in the analysis.Data are read from the graph and the errors include the statiucal and un-correlated systematic errors added in quadrature.