We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.
Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
A precise measurement of the ratio R of the total cross section e+e−→hadrons to the pointlike cross section e+e−→μ+μ− at a center-of-mass energy of 29.0 GeV is presented. The data were taken with the upgraded Mark II detector at the SLAC storage ring PEP. The result is R=3.92±0.05±0.09. The luminosity has been determined with three independent luminosity monitors measuring Bhabha scattering at different angular intervals. Recent calculations of higher-order QED radiative corrections are used to estimate the systematic error due to missing higher-order radiative corrections in the Monte Carlo event generators.
We have studied the energy-energy correlation in e+e− annihilation into hadrons at √s =29 GeV using the Mark II detector at the SLAC storage ring PEP. We find to O(αs2) that αs=0.158±0.003±0.008 if hadronization is described by string fragmentation. Independent fragmentation schemes give αs=0.10–0.14, and give poor agreement with the data. A leading-log shower fragmentation model is found to describe the data well.
The e^+p neutral-current deep inelastic scattering differential cross-sections $d\sigma/dQ^2$, for Q^2 > 400 GeV^2, $d\sigma/dx$ and $d\sigma/dy$, for Q^2 > 400, 2500 and 10000 GeV^2, have been measured with the ZEUS detector at HERA. The data sample of 47.7 pb^-1 was collected at a center-of-mass energy of 300 GeV. The cross-section, $d\sigma/dQ^2$, falls by six orders of magnitude between Q^2 = 400 and 40000 GeV^2. The predictions of the Standard Model are in very good agreement with the data. Complementing the observations of time-like Z^0 contributions to fermion-antifermion annihilation, the data provide direct evidence for the presence of Z^0 exchange in the space-like region explored by deep inelastic scattering.
The inclusive forward jet cross section in deep inelastic $e^+p$ scattering has been measured in the region of $x$--Bjorken, ~$4.5 \cdot 10^{-4}$~ to ~$4.5 \cdot 10^{-2}$. This measurement is motivated by the search for effects of BFKL--like parton shower evolution. The cross section at hadron level as a function of \xbj is compared to cross sections predicted by various Monte Carlo models. An excess of forward jet production at small \xbj is observed, which is not reproduced by models based on DGLAP parton shower evolution. The Colour Dipole model describes the data reasonably well. Predictions of perturbative QCD calculations at the parton level based on BFKL and DGLAP parton evolution are discussed in the context of this measurement.
The distribution of the azimuthal angle for the charged hadrons has been studied in the hadronic centre-of-mass system for neutral current deep inelastic positron-proton scattering with the ZEUS detector at HERA. Measurements of the dependence of the moments of this distribution on the transverse momenta of the charged hadrons are presented. Asymmetries that can be unambiguously attributed to perturbative QCD processes have been observed for the first time.
The forward-jet cross section in deep inelastic ep scattering has been measured using the ZEUS detector at HERA with an integrated luminosity of 6.36 pb^-1. The jet cross section is presented as a function of jet transverse energy squared, E(T,jet)^2, and Q^2 in the kinematic ranges 10^-2
Dijet cross sections are presented using photoproduction data obtained with the ZEUS detector during 1994. These measurements represent an extension of previous results, as the higher statistics allow cross sections to be measured at higher jet transverse energy (ETJ). Jets are identified in the hadronic final state using three different algorithms, and the cross sections compared to complete next-to-leading order QCD calculations. Agreement with these calculations is seen for the pseudorapidity dependence of the direct photon events with ETJ > 6 GeV and of the resolved photon events with ETJ > 11 GeV. Calculated cross sections for resolved photon processes with 6 GeV < ETJ < 11 GeV lie below the data.
The production of mesons containing strange quarks (K$^0_s$, $\phi$) and both singly and doubly strange baryons ($\Lambda$, Anti-$\Lambda$, and $\Xi$+Anti-$\Xi$) are measured at central rapidity in pp collisions at $\sqrt{s}$ = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at central rapidities for inelastic pp collisions are presented. For mesons, we report yields (