Date

Measurement of $e^+ e^- \to e^+ e^-$ and $e^+ e^- \to \gamma \gamma$ at Energies Up to 36.7-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Field, J. ; et al.
Phys.Lett.B 103 (1981) 148-152, 1981.
Inspire Record 165288 DOI 10.17182/hepdata.31169

The differential cross sections of the reactions e + e − → e + e − and e + e − → λλ are measured at energies between 33.0 and 36.7 GeV. The results agree with the predictions of quantum electrodynamics. A comparison with the standard model of electroweak interaction yields sin 2 θ W = 0.25 ± 0.13.

2 data tables

No description provided.

No description provided.


Test of Quantum Electrodynamics at {PETRA} Energies

The Aachen-DESY-Annecy(LAPP)-MIT-NIKHEF-Beijing collaboration Barber, D. ; Becker, U. ; Benda, H. ; et al.
Phys.Rev.Lett. 42 (1979) 1110, 1979.
Inspire Record 140093 DOI 10.17182/hepdata.20817

We report on the measurement of the reaction e+e−→e+e− with a large—solid-angle electromagnetic shower detector at center-of-mass energies s=13 and 17 GeV. Comparison of our results with predictions of quantum electrodynamics shows excellent agreement in both the angular distribution and energy dependence. Values of cutoff parameters are also given.

1 data table

No description provided.


The Reaction $\pi^- p \to K^0 \Lambda^0$ Up to 1334-{MeV}/$c$

Baker, R.D. ; Blissett, J.A. ; Bloodworth, I.J. ; et al.
Nucl.Phys.B 141 (1978) 29-47, 1978.
Inspire Record 130523 DOI 10.17182/hepdata.34954

New data on differential cross sections and polarisation are presented at nine incident momenta up to 1334 MeV/ c . An energy-dependent phase-shift analysis has been made and resonance parameters are given.

21 data tables

No description provided.

No description provided.

No description provided.

More…

Omega-Meson Production by Virtual Photons

Joos, P. ; Ladage, A. ; Meyer, H. ; et al.
Nucl.Phys.B 122 (1977) 365-382, 1977.
Inspire Record 118808 DOI 10.17182/hepdata.35453

Qausi-elastic ω production by ep scattering in the kinematic region 0.3. < Q 2 < 1.4 GeV 2 and 1.7 < W < 2.8 GeV was studied using a streamer chamber at DESY. The production angular distribution for γ V p → ω p has a strong non-peripheral component for W < 2 GeV. The ω production cross section falls by a factor of 4 as W changes from 1.7 to 2.8 GeV. In contrast the cross section for ω production with | t | < 0.5 GeV 2 is W independent between 1.7 and 2.8 GeV and for W > 2.0 GeV consistent in both W and Q 2 dependence with the predictions of a model based on one-pion exchange and diffraction.

5 data tables

FOR ALL T-VALUES. THE GAMMA* P TOTAL CROSS SECTION WAS TAKEN FROM A FIT TO THE DATA OF S. STEIN ET AL., PR D12, 1884 (1975). 'PPD'.

'PPD'. PERIPHERAL OMEGA PRODUCTION.

No description provided.

More…

Rho Production by Virtual Photons

Joos, P. ; Ladage, A. ; Meyer, H. ; et al.
Nucl.Phys.B 113 (1976) 53-92, 1976.
Inspire Record 108749 DOI 10.17182/hepdata.35708

The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.

10 data tables

DIPION CHANNEL CROSS SECTION.

THE TOTAL CROSS SECTION WAS OBTAINED BY THE AUTHORS FROM A FIT TO THE SINGLE ARM DATA OF S. STEIN ET AL., PR D12, 1884 (1975).

No description provided.

More…

New evidence for the p-11(1470) resonance in pi- p ---> n pi0 below 600 mev

Hauser, M.G. ; Chen, K.W. ; Crean, P.A. ;
Phys.Lett.B 35 (1971) 252-256, 1971.
Inspire Record 69248 DOI 10.17182/hepdata.28485

The differential cross section for π − p → n π o has been measured in detail from 150 to 600 MeV. The backward cross section has a previously unobserved dramatic dip at 425 MeV. We interpret this dip in terms of interference between the P 33 (1236) and the P 11 (1470) resonances. These data provide strong evidence for the adequacy of the phase shift solutions in this energy range.

116 data tables

SCALED TO AGREE WITH SOLUTION AT 225 MEV AND THEN INTERPOLATED.

SCALED TO AGREE WITH SOLUTION AT 225 MEV AND THEN INTERPOLATED.

SCALED TO AGREE WITH SOLUTION AT 225 MEV AND THEN INTERPOLATED.

More…

Measurement of p+p --> pi++d at 90-degrees and 5 GeVc

Ruddick, K. ; Ratner, L.G. ; Edwards, K.W. ; et al.
Phys.Rev. 165 (1968) 1442-1445, 1968.
Inspire Record 944945 DOI 10.17182/hepdata.26528

The differential cross section for the process p+p→π++d was measured at 5.0 GeVc for a center-of-mass angle of 90°. The experiment was done on the Argonne ZGS with the same apparatus as was used in a recent 90° proton-proton elastic scattering experiment. The extracted proton beam of the ZGS was made to impinge upon a CH2 target. The pion and deuteron were detected by two spectrometers, each containing magnets and a scintillation-counter telescope, in coincidence. The incident beam flux was measured by a radiochemical analysis of the CH2 target. The 90° cross section at 5.0 GeVc was found to be 35±9 nb/sr.

1 data table

No description provided.