The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.
J/psi differential production cross section in sqrt(s).
J/psi transverse momentum distribution in sqrt(s).
J/psi transverse momentum distribution in sqrt(s).
J/psi production in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV has been measured by the PHENIX experiment at rapidities -2.2 < y < +2.4. The cross sections and nuclear dependence of J/\psi production versus rapidity, transverse momentum, and centrality are obtained and compared to lower energy p+A results and to theoretical models. The observed nuclear dependence in d+Au collisions is found to be modest, suggesting that the absorption in the final state is weak and the shadowing of the gluon distributions is small and consistent with Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-based parameterizations that fit deep-inelastic scattering and Drell-Yan data at lower energies.
J/PSI differential cross section in P+P reactions( times di-lepton branching ratio B=5.9%) as a function of rapidity.
J/PSI nuclear modification factor RDA,as a function of rapidity.
Total cross-section for J/PSI production in P P reactions. The total cross section is estimated using a pythia calculation, normalized to our data. The di-lepton branching ratio used is 5.9%.The systematic error given is due to the fit. The choice of the PDF and model was estimated to have little impact in the value of the total cross section.
The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.
Value of the Alpha power as used in a fit of dN/dy versus Ncoll of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value only includes data from Au+Au collisions The value of Alpha = 1 is the expectation in the absence of medium effects.
Value of the Alpha power as used in a fit of dN/dy versus Ncoll, of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value is calculated including previous data of p+p collisions, measured by PHENIX, in addition of the Au+Au data The value of Alpha = 1 is the expectation in the absence of medium effects.
Spectrum in transverse momentum of electrons created in open heavy flavor decays, for minimum bias events.
Inclusive differential cross sections $d\sigma_{pA}/dx_F$ and $d\sigma_{pA}/dp_t^2$ for the production of \kzeros, \lambdazero, and \antilambda particles are measured at HERA in proton-induced reactions on C, Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to $\sqrt {s} = 41.6$ GeV in the proton-nucleon system. The ratios of differential cross sections \rklpa and \rllpa are measured to be $6.2\pm 0.5$ and $0.66\pm 0.07$, respectively, for \xf $\approx-0.06$. No significant dependence upon the target material is observed. Within errors, the slopes of the transverse momentum distributions $d\sigma_{pA}/dp_t^2$ also show no significant dependence upon the target material. The dependence of the extrapolated total cross sections $\sigma_{pA}$ on the atomic mass $A$ of the target material is discussed, and the deduced cross sections per nucleon $\sigma_{pN}$ are compared with results obtained at other energies.
Inclusive differential cross section DSIG/DXL for K0S production in the XL interval -0.12 to 0.0 plus the total cross section after extrapolation to the full XL range.
Inclusive differential cross section DSIG/DXL for LAMBDA production in the XL interval -0.12 to 0.0 plus the total cross section after extrapolation to thefull XL range.
Inclusive differential cross section DSIG/DXL for LAMBDABAR production in the XL interval -0.12 to 0.0 plus the total cross section after extrapolation to the full XL range.
The complete charge distribution of products from Au nuclei fragmenting in nuclear emulsion at 10.7A GeV has been measured. Multiplicities of produced particles and particles associated with the targe
No description provided.
No description provided.
An experiment performed at Fermilab used double-arm calorimeter triggers to study di-jet production by 400 GeV protons and 200 GeVπ− mesons incident on liquid hydrogen. The observed ratio of positive to negative leading particles in the jets was compared forpp andπp production using a tree level parton scattering model. The results are moderately sensitive to the form of the pion gluon distribution function and yieldx g(x)⋍(1−x)2.75±0.40±0.75.
One parameter function is used for gluon distribution: X*G(X) = C*(1-x)**POWER.
The nuclear dependence for 800 GeV/c proton production of neutron D mesons has been measured near xF=0 in Experiment 789 at Fermilab. D mesons from beryllium and gold targets were detected with a pair spectrometer and a silicon vertex detector via their decay D→Kπ. No nuclear dependence is found, with a measured α=1.02±0.03±0.02. The measured differential cross section, dσ/dxF, for neutral-D-meson production at 〈xF〉=0.031 is 58±3±7 μb/nucleon. The integrated cross section obtained by extrapolation of the measured cross section to all xF is 17.7±0.9±3.4 μb/nucleon and is consistent with previous measurements.
.
.
.
We present a measurement and comparison of the χc1 and χc2 production cross sections determined from interactions of 300-GeV/c π± and p with a Li target. We find χc1χc2 production ratios of 0.52−0.27+0.57 and 0.08−0.15+0.25 from reactions induced by π± and p, respectively.
The cross section per nucleon.
The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(PT**2)= CONST*EXP(SLOPE*PT), D(SIG)/D(XL) = CONST*(1-(XL-CONST(C=X0))**2)**POWER(C=1) , and D(SIG)/D(XL) = CONST*(1-ABS(XL-CONST(C=XC)))**POWER(C=2).
The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(COS(THETA)) = CONST*(1+CONST*COS(THETA)**2), where THETA is the angle between the MU+ and beam momentum in the CHI/C rest frame.
The yields of the 1S and the sum of the 2S and 3S Υ resonances have been measured for 800-GeV protons incident on targets of H2, C, Ca, Fe, and W. A significant nuclear dependence is seen in the yield per nucleon which, within errors, is the same for the Υ(1S) and Υ(2S+3D) states. A large decrease in the relative yield from heavy nuclei is found for the range xF<0. Significant nuclear dependence is also observed in the pt distribution. Differential cross sections for the Υ(1S) for H2 are presented over the ranges 0.24≤pt≤3.4 GeV/c and -0.15≤xF≤0.5.
Mass dependence as a function of feynman X for UPSI(1S) production.
Mass dependence as a function of feynman X for UPSI(2S/3S) production.
Mass dependence as a function of transverse momentum for UPSI(1S) production.
We present preliminary results on the measurement of a variety of exclusive hadron interactions at center of mass scattering angles of 90°. Data are also presented which show the relative transparency of nuclei to πp and pp elastic scattering in this kinematic range.
No description provided.
No description provided.
No description provided.