Date

Energy dependence of event shapes and of alpha(s) at LEP-2.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 456 (1999) 322-340, 1999.
Inspire Record 499183 DOI 10.17182/hepdata.49129

Infrared and collinear safe event shape distributions and their mean values are determined using the data taken at five different centre of mass energies above M Z with the DELPHI detector at LEP. From the event shapes, the strong coupling α s is extracted in O ( α s 2 ), NLLA and a combined scheme using hadronisation corrections evaluated with fragmentation model generators as well as using an analytical power ansatz. Comparing these measurements to those obtained at M Z , the energy dependence (running) of α s is accessible. The logarithmic energy slope of the inverse strong coupling is measured to be d α −1 s d log (E cm ) =1.39±0.34( stat )±0.17( syst ) , in good agreement with the QCD expectation of 1.27.

47 data tables

Moments of the (1-THRUST) distributions at cm energies 133, 161, 172 and 183 GeV.

Moments of the Thrust Major distributions at cm energies 133, 161, 172 and 183 GeV.

Moments of the Thrust Minor distributions at cm energies 133, 161, 172 and 183 GeV.

More…

Measurement of W pair production in e+ e- collisions at 183-GeV.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Phys.Lett.B 453 (1999) 107-120, 1999.
Inspire Record 497105 DOI 10.17182/hepdata.49130

The production of W+W- pairs is analysed in a data sample collected by ALEPH at a mean centre-of-mass energy of 182.7 GeV, corresponding to an integrated luminosity of 57 pb-1. Cross sections are given for different topologies of W decays into leptons or hadrons. Under Standard Model assumptions for the W-pair production and decay, the W-pair cross section is measured to be 15.57+-0.62(stat.)+-0.29(syst.) pb. Using also the W-pair data samples collected by ALEPH at lower centre-of-mass energies, the decay branching ratio of the W boson into hadrons is measured to be B(W->hadrons)= 68.93+-1.21(stat.)+-0.51(syst.)%, allowing a determination of the CKM matrix element |Vcs|= 1.043 +- 0.058(stat.) +- 0.026(syst.). The agreement of the cross sections with the Standard Model prediction allows a limit to be set on the W decay rate to undetectable final states.

3 data tables

The overal total cross section.

Cross sections for the fully leptonic decay channels.

Cross sections for the parial leptonic and hadronic decay channels.


Study of fermion pair production in e+ e- collisions at 130-GeV to 183-GeV

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Eur.Phys.J.C 12 (2000) 183-207, 2000.
Inspire Record 498072 DOI 10.17182/hepdata.49128

The cross sections and forward-backward asymmetries of hadronic and leptonic events produced in e+e- collisions at centre-of-mass energies of 130-183 GeV are presented. Results for ee, mumu, tautau, qq, bb and cc production show no significant deviation from the Standard Model predictions. This enable constraints to be set upon physics beyond the Standard Model such as four-fermion contact interactions, leptoquarks, Z' bosons and R-parity violating squarks and sneutrinos. Limits on the energy scale Lambda of eeff contact interactions are typically in the range from 2-10 TeV. Limits on R-parity violating sneutrinos reach masses of a few hundred GeV for large values of their Yukawa couplings.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Neutron production in coincidence with fragments from the 40Ca + H reaction at Elab = 357A and 565A MeV

Tuve, C. ; Albergo, S. ; Boemi, D. ; et al.
Phys.Rev.C 59 (1999) 233-238, 1999.
Inspire Record 493470 DOI 10.17182/hepdata.25641

Neutron production, in coincidence with fragments emitted in the 40Ca+H reaction at Elab=357A and 565A MeV, has been measured using a 3-module version of the multifunctional neutron spectrometer MUFFINS. The mean neutron multiplicities for neutrons detected in the angular range covered by MUFFINS (0°−3.2°) have been estimated from the comparison between the neutron cross sections, in coincidence with the fragments, and the elemental cross sections. We have found evidence for a preequilibrium emission of prompt neutrons in superposition to a “slower” deexcitation of the equilibrated remnant by emission of nucleons and fragments, as already seen in inclusive rapidity distributions. The energy dependence of the inclusive neutron production cross sections, measured in a previous work, is here interpreted as due to the stronger neutron focusing in the forward direction at the higher energy. Comparison with a BNV+phase space coalescence model is discussed.

1 data table

No description provided.


Measurement and interpretation of fermion pair production at LEP energies from 130-GeV to 172-GeV

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 11 (1999) 383-407, 1999.
Inspire Record 495462 DOI 10.17182/hepdata.34520

None

9 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of W and Z boson production cross-sections

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 052003, 1999.
Inspire Record 494696 DOI 10.17182/hepdata.42125

DO has measured the inclusive production cross section of W and Z bosons in a sample of 13 pb$^{-1}$ of data collected at the Fermilab Tevatron. The cross sections, multiplied by their leptonic branching fractions, for production in pbar-p collisions at sqrt{s}=1.8 TeV are sigma_W*B(W->e nu) = 2.36+-0.02+-0.08+-0.13 nb, sigma_W*B(W->mu nu) = 2.09+-0.06+-0.22+-0.11 nb, sigma_Z*B(Z->e+ e-) = 0.218+-0.008+-0.008+-0.012 nb, and sigma_Z*B(Z->mu+ mu-) = 0.178+-0.022+-0.021+-0.009 nb, where the first uncertainty is statistical and the second systematic; the third reflects the uncertainty in the integrated luminosity. For the combined electron and muon analyses, we find sigma_W*B(W->l mu)/sigma_Z*B(Z->l+ l-) = 10.90+-0.52. Assuming standard model couplings, we use this result to determine the width of the W boson, and obtain Gamma(W) = 2.044+-0.097 GeV.

2 data tables

No description provided.

Combined electron and muon analysis.


Measurement of the top quark pair production cross section in the all-jets decay channel

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 83 (1999) 1908-1913, 1999.
Inspire Record 494099 DOI 10.17182/hepdata.42119

We present a measurement of tbar-t production using multijet final states in pbar-p collisions at a center-of-mass energy of 1.8 TeV, with an integrated luminosity of 110.3 pb(-1). The analysis has been optimized using neural networks to achieve the smallest expected fractional uncertainty on the tbar-t production cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/- 1.5(syst.) pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this result with previous D0 measurements, where one or both of the W bosons decay leptonically, gives a tbar-t production cross section of 5.9 +/- 1.2(stat) +/- 1.1(syst) pb.

1 data table

No description provided.


Simultaneous multiplicity and forward energy characterization of particle spectra in Au + Au collisions at 11.6-A-GeV/c.

The E-802 collaboration Ahle, L. ; Akiba, Y. ; Ashktorab, K. ; et al.
Phys.Rev.C 59 (1999) 2173-2188, 1999.
Inspire Record 501648 DOI 10.17182/hepdata.4988

In this paper Au+Au collisions at 11.6A GeV/c are characterized by two global observables: the energy measured near zero degrees (EZCAL) and the total event multiplicity. Particle spectra are measured for different event classes that are defined in a two-dimensional grid of both global observables. For moderately central events (σ/σint<12%) the proton dN/dy distributions do not depend on EZCAL but only on the event multiplicity. In contrast the shape of the proton transverse spectra shows little dependence on the event multiplicity. The change in the proton dN/dy distributions suggests that different conditions are formed in the collision for different event classes. These event classes are studied for signals of new physics by measuring pion and kaon spectra and yields. In the event classes doubly selected on EZCAL and multiplicity there is no indication of any unusual pion or kaon yields, spectra, or K/π ratio even in the events with extreme multiplicity.

48 data tables

Table for event classification (from CLASS1 to CLASS8) where ZCAL energy solely used for event selection. Number of Projectile Participants Npp=197*(1-E(P=3)/EKIN(P=1)).

CLASS1 (see Table for event classification).

CLASS1 (see Table for event classification).

More…

The scale dependence of the hadron multiplicity in quark and gluon jets and a precise determination of C(A)/C(F).

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 449 (1999) 383-400, 1999.
Inspire Record 495414 DOI 10.17182/hepdata.49173

Data collected at the Z resonance using the DELPHI detector at LEP are used to determine the charged hadron multiplicity in gluon and quark jets as a function of a transverse momentum-like scale. The colour factor ratio, \cacf, is directly observed in the increase of multiplicities with that scale. The smaller than expected multiplicity ratio in gluon to quark jets is understood by differences in the hadronization of the leading quark or gluon. From the dependence of the charged hadron multiplicity on the opening angle in symmetric three-jet events the colour factor ratio is measured to be: C_A/C_F = 2.246 \pm 0.062 (stat.) \pm 0.080 (syst.) \pm 0.095 (theo.)

3 data tables

Charged multiplicity in events with a hard photon, as a function of the apparent centre-of-mass energy (SQRT(S)) of the hadronic system. The errors shown are statistical only.

Charged multiplicity in symmetric three jet events as function of the opening angle between the low energetic jets, THETA1. Jets are defined from charged and neutral particles using the DURHAM algorithm. The errors shown are statistical only.

Twice the difference of the multiplicity in three jet events and in qqbar events of comparable scale 2(N_3jet-N_qqbar). The three-jet event multiplicity isequal to the data of Fig. 3c), the qqbar-multiplicity is taken from a fit of th e e+e- data corrected for the varying b-quark contribution. This multiplicity can be identified with the multiplicity of a hypothetical gluon-gluon event. Thereis a normalization uncertainty (i.e. a scale independent constant) of the gluon -gluon event multiplicity which should not influence the slope of the gg-multiplicity with scale (see paper). The errors shown are statistical only.


Measurement of the forward backward asymmetry of c and b quarks at the Z pole using reconstructed D mesons.

The DELPHI collaboration Abreu, P. ; Adye, T. ; Adzic, P. ; et al.
Eur.Phys.J.C 10 (1999) 219-237, 1999.
Inspire Record 495464 DOI 10.17182/hepdata.49295

A measurement of the forward--backward asymmetry of $e^{+}e^{-} \to c\bar{c}$ and $e^{+}e^{-} \to b\bar{b}$ on the $Z$ resonance is performed using about 3.5 million hadronic $Z$ decays collected by the DELPHI detector at LEP in the years 1992 to 1995. The heavy quark is tagged by the exclusive reconstruction of several $D$ meson decay modes. The forward--backward asymmetries for $c$ and $b$ quarks at the $Z$ resonance are determined to be: \[ \renewcommand{\arraystretch}{1.6} \begin{array}{rcr@{}l} \Afbc(\sqrt{s} = 91.235 {\rm GeV}) &=& &0.0659 \pm 0.0094 (stat) \pm 0.0035 (syst) \Afbb (\sqrt{s} = 91.235 {\rm GeV}) &=& &0.0762 \pm 0.0194 (stat) \pm 0.0085 (syst) \Afbc(\sqrt{s} = 89.434 {\rm GeV}) &=&-&0.0496 \pm 0.0368 (stat) \pm 0.0053 (syst) \Afbb(\sqrt{s} = 89.434 {\rm GeV}) &=& &0.0567 \pm 0.0756 (stat) \pm 0.0117 (syst) \Afbc(\sqrt{s} = 92.990 {\rm GeV}) &=& &0.1180 \pm 0.0318 (stat) \pm 0.0062 (syst) \Afbb(\sqrt{s} = 92.990 {\rm GeV}) &=& &0.0882 \pm 0.0633 (stat) \pm 0.0122 (syst) \end{array} \] The combination of these results leads to an effective electroweak mixing angle of: SINEFF = 0.2332 \pm 0.0016

1 data table

No description provided.