We have measured the magnetic moments of the Σ+ and Σ¯ − hyperons produced by 800-GeV protons incident on a Cu target. We determine the Σ+ magnetic moment to be (2.4613±0.0034±0.0040)μN where the uncertainties are statistical and systematic, respectively. In this first measurement we determine the magnetic moment of the Σ¯ − to be -(2.428±0.036±0.007)μN. The magnetic moments of the Σ+ and Σ¯ − are consistent with each other in magnitude but opposite in sign as required by CPT invariance.
No description provided.
No description provided.
The differential cross sections dσ/dxF for J/ψ produced inclusively in 800 GeV/c p-Cu and p-Be collisions have been measured in the kinematic range 0.30≤xF≤0.95 through the decay mode J/ψ→μ+μ−. They are compared with the predictions of the semilocal duality model for several sets of parton density functions. No evidence for a suggested intrinsic charm contribution to the cross section is observed. The ratio of the differential cross sections for Cu and Be targets confirms the suppression of J/ψ production in heavy nuclei at large xF.
No description provided.
No description provided.
An analysis of the production of the Λ baryon in the hadronic decays of the Z 0 is presented, based on about 993K multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. The differencial cross section of the Λ and the correlations between Λ and Λ produced in the same event are compared to current models, based both on string fragmentation and on cluster decay. The predictions of the string fragmentation model are found to give satisfactory agreements with the data, clearly better than those of the cluster model.
No description provided.
Combined LAMBDA and LAMBDABAR multiplicity.
Errors contain systematic uncertainties.
We have measured the branching ratio for the hyperon radiative decay Ξ−→Σ−γ from a sample of 211±33 events obtained in the polarized 375 GeV/c charged hyperon beam at Fermilab. We find B(Ξ−→Σ−γ/Ξ−→Λ0π−)=(1.22±0.23±0.06)×10−4 where the quoted errors are statistical and systematic, respectively. We have also obtained an indication that the sign of the asymmetry parameter of this decay is positive.
Polarized 375 GeV charged hyperon beam at Fermilab. Sample of 211 +- 33 events.
We have determined the strong coupling αs from measurements of jet rates in hadronic decays of Z0 bosons collected by the SLD experiment at SLAC. Using six collinear and infrared safe jet algorithms we compared our data with the predictions of QCD calculated up to second order in perturbation theory, and also with resummed calculations. We find αs(MZ2)=0.118±0.002(stat)±0.003(syst)±0.010(theory), where the dominant uncertainty is from uncalculated higher order contributions.
The second systematic error comes from the theoretical uncertainties.
We have measured total cross sections for the reaction π+p→π+π−p at incident pion kinetic energies of 190, 200, 220, 240, and 260 MeV. We use this result to deduce a new value of the chiral symmetry breaking parameter, ξ=-0.25±0.10, in a global constrained fit of the five ππN near-threshold amplitudes. Consequently, we report new soft pion model values for the s-wave ππ scattering lengths.
No description provided.
We have mesured the polarization of 375-GeV/c Σ+ and Σ¯ − hyperons produced by 800-GeV/c protons incident on a Cu target. We find that the Σ+ polarization rises with increasing pt to a maximum of 16% at pt=1.0 GeV/c and then decreases to 10% at pt=1.8 GeV/c. We compare this Σ+ polarization with data at lower energies. The Σ¯ − polarization has been measured for the first time. It has the same sign as the Σ+ but smaller magnitude in a similar kinematical region.
Data from Horizontal targeting.
Data from Vertical targeting.
Data from Horizontal targeting.
A complete set of polarization-transfer observables has been measured for quasifree (p→,n→) reactions on H2, C12, and Ca40 at a bombarding energy of 495 MeV and a laboratory scattering angle of 18°. The data span an energy-loss range from 0 to 160 MeV, with a corresponding momentum transfer range of qc.m.=1.7–1.9 fm−1. The laboratory observables are used to construct partial cross sections proportional to the nonspin response and three orthogonal spin responses. These results are compared to the transverse spin response measured in deep inelastic electron scattering and to nuclear responses based on the random phase approximation. The polarization observables for all three targets are remarkably similar and reveal no evidence for an enhancement of the spin-longitudinal nuclear response relative to the spin-transverse response. These results suggest the need for substantial modifications to the standard form assumed for the residual particle-hole interaction.
No description provided.
No description provided.
No description provided.
A study of the fragmentation properties of charm and bottom quarks intoD mesons is presented. From 263 700Z0 hadronic decays collected in 1991 with the DELPHI detector at the LEP collider,D0,D+ andD*+ are reconstructed in the modesK−π+,K−π+K+ andD0π+ followed byD0→K−π+, respectively. The fractional decay widths\(\Gamma {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} \mathord{\left/ {\vphantom {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} {\Gamma _h }}} \right. \kern-\nulldelimiterspace} {\Gamma _h }}\) are determined, and first results are presented for the production ofD mesons from\(c\bar c\) and\(b\bar b\) events separately. The average energy fraction ofD*± in charm quark fragmentation is found to be 〈XE(D*)〉c=0.487±0.015 (stat)±0.005 (sys.). Assuming that the fraction ofDs and charm-baryons produced at LEP is similar to that around 10 GeV, theZ0 partial width into charm quark pairs is determined to beΓc/Γh=0.187±0.031 (stat)±0.023 (sys). The probability for ab quark to fragment into\(\bar B_s \) orb-baryons is inferred to be 0.268±0.094 (stat)±0.100 (sys) from the measured probability that it fragments into a\(\bar B^0 \) orB−.
Using full data sample.
Using full data sample with proper time > 1 ps to enrich (b bbar) content.
Data with Delta(L) > 1.
We present a measurement and comparison of the χc1 and χc2 production cross sections determined from interactions of 300-GeV/c π± and p with a Li target. We find χc1χc2 production ratios of 0.52−0.27+0.57 and 0.08−0.15+0.25 from reactions induced by π± and p, respectively.
The cross section per nucleon.
The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(PT**2)= CONST*EXP(SLOPE*PT), D(SIG)/D(XL) = CONST*(1-(XL-CONST(C=X0))**2)**POWER(C=1) , and D(SIG)/D(XL) = CONST*(1-ABS(XL-CONST(C=XC)))**POWER(C=2).
The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(COS(THETA)) = CONST*(1+CONST*COS(THETA)**2), where THETA is the angle between the MU+ and beam momentum in the CHI/C rest frame.